Research Article
BibTex RIS Cite

ANALYZING THE IMPACT OF THE 2023 GENERAL ELECTIONS ON LAND PRICES USING MACHINE LEARNING: A CASE STUDY IN ÇANAKKALE, TURKEY

Year 2025, Volume: 13 Issue: 1, 147 - 164, 01.03.2025
https://doi.org/10.36306/konjes.1579931

Abstract

This study analyses the impact of the general elections to be held on 14 May 2023 on the real estate market in Turkey. The aim of the study is to develop a model to predict land unit prices (₺/m²) by analysing land prices, exchange rates and gold values observed before (February-March-April) and after (May-June-July) elections for Ayvacık, Bayramiç, Biga, Çan, Eceabat, Ezine, Gelibolu, Lapseki, Merkez and Yenice districts of Çanakkale province. Daily fluctuations in foreign exchange and gold values, which are the main economic parameters in the study, were recorded during the election period. The findings of this research, which predicts price movements in the property market using machine learning methods such as regression trees, reveal that unit prices of land generally tend to increase with increases in exchange rates, but in some districts where gold prices increase, the unit price shows a reverse trend. This is attributed to the fact that investors prefer gold as a safer asset in times of economic uncertainty. The results obtained can help investors and buyers to predict future trends in property prices, as well as contribute to the development of economic policies by experts to stabilise fluctuations in investment instruments.

References

  • S. Yalpir, S. Sisman, A. U. Akar, and F. B. Unel, "Feature selection applications and model validation for mass real estate valuation systems," Land Use Policy, vol. 108, no. 105539, 2021, doi.org/10.1016/j.landusepol.2021.105539.
  • W. Coleman, B. Johann, N. Pasternak, J. Vellayan, N. Foutz, and H. Shakeri, “Using machine learning to evaluate real estate prices using location big data,” In Proc. Systems and Information Engineering Design Symp. (SIEDS), 2022, pp. 168-172.
  • C. Haydaroğlu and G. Çevik, “Türkiye’de seçim sistemlerinin demokrasi ve ekonomi ilişkisi çerçevesinde incelenmesi,” Uluslararası Politik Araştırmalar, vol. 2, no. 1, pp. 51-63, 2016, doi: 10.25272/j.2149-8539.2016.2.1.05.
  • H. S. Türk, “Seçim, seçim sistemleri ve anayasal tercih,” Anayasa Yargısı, vol. 22, no. 1, pp. 75-113, 2006.
  • C. Y. Choi, D. Quigley, and X. Wang, “The impacts of local housing markets on US presidential elections: Via the collateral channel,” SSRN, 2023, doi: 10.2139/ssrn.4544008.
  • M. Zimmer, “Home prices and the 2008 presidential election: Evidence from state level data,” The Social Science Journal, vol. 47, no. 2, pp. 439-446, 2010, doi: 10.1016/j.soscij.2009.11.004.
  • B. Aha, D. Higgins, and T. Lee, “UK political cycle and the effect on national house prices: An exploratory study,” In Proc. European Real Estate Society 25th Annu. Conference, 27-30 June, 2018.
  • V. Nguyen and C. Vergara-Alert, “Political uncertainty and housing markets,” Journal of Housing Economics, vol. 61, p. 101952, 2023, doi: 10.1016/j.jhe.2023.101952.
  • E. Cifci, A. Tidwell, J. S. Clements, and A. Jauregui, “Housing performance and the electorate,” Journal of Real Estate Research, vol. 45, no. 4, pp. 462-484, 2023, doi: 10.2765/87943.
  • B. Aha, D. Higgins, and T. Lee, “United Kingdom general elections and the impact on house prices,” International Journal of Housing Markets and Analysis, vol. 16, no. 1, pp. 206-217, 2023, doi: 10.1108/IJHMA-04-2020-0047.
  • S. Monfared and A. Pavlov, “Political risk affects real estate markets,” Journal of Real Estate Finance Economics, vol. 58, pp. 1-20, 2019, doi: 10.1007/s11146-017-9619-y.
  • J. Aizenman and Y. Jinjarak, “Current account patterns and national real estate markets,” Journal of Urban Economics, vol. 66, no. 2, pp. 75-89, 2009, doi: 10.1016/j.jue.2009.05.002.
  • İ. Ö. Badurlar, “Türkiye'de konut fiyatları ile makro ekonomik değişkenler arasındaki ilişkinin araştırılması,” Anadolu University Journal of Social Sciences, vol. 8, no. 1, pp. 223-228, 2008
  • T. Habanabakize and Z. Dickason, “Political risk and macroeconomic effect of housing prices in South Africa,” Cogent Economics and Finance, vol. 10, no. 1, p. 2054525, 2022, doi: 10.1080/23322039.2022.2054525.
  • V. Cohen and L. Karpavičiūtė, “The analysis of the determinants of housing prices,” Independent Journal of Management & Production, vol. 8, no. 1, pp. 49-63, 2017, doi: 10.14807/ijmp.v8i1.521.
  • L. I. U. Yang and H. U. Zhiqiang, “On correlation between RMB exchange rate and real estate price based on financial engineering,” Systems Engineering Procedia, vol. 3, pp. 146-152, 2012, doi: 10.1016/j.sepro.2011.11.020.
  • Xiuzhi, Z. and Xiaoguang, W., “The analysis: The influence of RMB exchange rate fluctuation on real estate price in China,”In Proc. XXIII FIG Congress, Munich, Germany, 2006, pp. 1-9.
  • N. K. Yılmaz, “Investigation of the relationship between gold, dollar, euro exchange rates and housing sales: A study with Granger causality analysis,” Florya Chronicles of Political Economy, vol. 7, no. 2, pp. 169-193, 2021.
  • M. Bahmani-Oskooee and T. P. Wu, “Housing prices and real effective exchange rates in 18 OECD countries: A bootstrap multivariate panel Granger causality,” Economic Analysis and Policy, vol. 60, pp. 119-126, 2018, doi: 10.1016/j.eap.2018.09.005.
  • E. Benson, J. Hansen, A. Schwartz, and G. Smersh, “Canadian/US exchange rates and nonresident investors: Their influence on residential property values,” Journal of Real Estate Research, vol. 18, no. 3, pp. 433-461, 1999, doi: 10.1080/10835547.1999.12091005.
  • N. Miller, M. Sklarz, and N. Real, “Japanese purchases, exchange rates and speculation in residential real estate markets,” Journal of Real Estate Research, vol. 3, no. 3, pp. 39-49, 1988.
  • . J. Lipscomb, J. Harvey, and H. Hunt, “Exchange-rate risk mitigation with price-level-adjusting mortgages: The case of the Mexican UDI,” Journal of Real Estate Research, vol. 25, no. 1, pp. 23-42, 2003, doi: 10.1080/10835547.2003.12091103.
  • H. A. Karadaş and E. Salihoğlu, “Seçili makroekonomik değişkenlerin konut fiyatlarına etkisi: Türkiye örneği,” Ekonomik ve Sosyal Araştırmalar Dergisi, vol. 16, no. 1, pp. 63-80, 2020.
  • O. A. Odhiambo and B. Ombok, “Analysis of inflation, interest rate, exchange rate and real estate residential property prices, Kenya,” The International Journal of Business & Management, vol. 10, no. 11, 2022, doi: 10.24940/theijbm/2022/v10/i11/BM2211-007.
  • A. Derdouri and Y. Murayama, “A comparative study of land price estimation and mapping using regression kriging and machine learning algorithms across Fukushima Prefecture, Japan,” Journal of Geographical Sciences, vol. 30, pp. 794-822, 2020, doi: 10.1007/s11442-020-1756-1.
  • A. Louati, R. Lahyani, A. Aldaej, A. Aldumaykhi, and S. Otai, “Price forecasting for real estate using machine learning: A case study on Riyadh City,” Concurrency and Computation: Practice and Experience, vol. 34, no. 6, 2022, doi: 10.1002/cpe.6748.
  • W. K. Ho, B. S. Tang, and S. W. Wong, “Predicting property prices with machine learning algorithms,” Journal of Property Research, vol. 38, no. 1, pp. 48-70, 2021, doi: 10.1080/09599916.2020.1832558.
  • J. Kim, J. Won, H. Kim, and J. Heo, “Machine-learning-based prediction of land prices in Seoul, South Korea,” Sustainability, vol. 13, no. 23, p. 13088, 2021, doi: 10.3390/su132313088.
  • A. S. Ravikumar, "Real estate price prediction using machine learning," Ph.D. dissertation, National College of Ireland, Dublin, 2017.
  • Türkiye İstatistik Kurumu (TÜİK), “Gayri safi yurt içi hasıla,” 2023. [Online]. Available: https://data.tuik.gov.tr/. [Accessed: 12-Oct-2023].
  • Türkiye İstatistik Kurumu (TÜİK), “Adrese dayalı nüfus kayıt sistemi,” 2023. [Online]. Available: https://data.tuik.gov.tr/. [Accessed: 05-Sep-2023].
  • S. K. Sümer, S. M. Say, and G. Çiçek, "Determining the residue and energy potential of field crops in Çanakkale," Anadolu Tarım Bilimleri Dergisi, vol. 31, no. 2, pp. 240-247, 2016. doi: 10.7161/omuanajas.260980.
  • S. Yücebaş, M. Doğan, and L. Genç, "A C4.5-CART decision tree model for real estate price prediction and the analysis of the underlying features," Konya Journal of Engineering Sciences, vol. 10, no. 1, pp. 147-161, 2022. doi: 10.36306/konjes.1013833.
  • J. K. A. Jack, F. Okyere, and E. K. Amoah, "Effects of exchange rate volatility on real estate prices in developing economies: A case of Ghana," Advances in Social Sciences Research Journal, vol. 6, no. 11, pp. 268-287, 2019. doi: 10.14738/assrj.611.7392.
  • F. K. Gülağız and E. Ekinci, "Farklı regresyon analizi yöntemleri kullanılarak ev fiyatlarının tahmini," In Proceedings of the International Symposium on Industry, vol. 4, pp. 203-207, 2017.
  • X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, and D. Steinberg, "Top 10 algorithms in data mining," Knowledge and Information Systems, vol. 14, pp. 1-37, 2008. doi: 10.1007/s10115-007-0114-2.
  • W. Y. Loh, "Classification and regression trees," Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14-23, 2011. doi: 10.1002/widm.8.
  • R.P. Liu, "Research of decision tree classification algorithm in data mining," Journal of East China Institute of Technology, vol. 9, no. 5, pp. 1-8, 2010.
  • M. Doğruel and S. Ü. Fırat, "Veri madenciliği karar ağaçları kullanarak ülkelerin inovasyon değerlerinin tahmini ve doğrusal regresyon modeli ile karşılaştırmalı bir uygulama," Istanbul Business Research, vol. 50, no. 2, pp. 465-493, 2021. doi: 10.26650/ibr.2021.50.015019.
  • N. J. Nagelkerke, "A note on a general definition of the coefficient of determination," Biometrika, vol. 78, no. 3, pp. 691-692, 1991.
  • C. Wang, "Can RMB exchange rate expectations explain the fluctuations of China’s housing prices?," Journal of Applied Finance Banking, vol. 10, no. 5, pp. 211-233, 2020. doi: 10.47260/jafb/10512.
  • Tapu Kadastro Genel Müdürlüğü, "Parsel sorgu uygulaması, alım satım yoğunluğu," 2023. [Online]. Available: https://parselsorgu.tkgm.gov.tr/. [Accessed: 24-Jan-2024].
  • Tapu Kadastro Genel Müdürlüğü, "Parsel sorgu uygulaması, alım satım yoğunluğu," 2022. [Online]. Available: https://parselsorgu.tkgm.gov.tr/. [Accessed: 24-Jan-2024].
Year 2025, Volume: 13 Issue: 1, 147 - 164, 01.03.2025
https://doi.org/10.36306/konjes.1579931

Abstract

References

  • S. Yalpir, S. Sisman, A. U. Akar, and F. B. Unel, "Feature selection applications and model validation for mass real estate valuation systems," Land Use Policy, vol. 108, no. 105539, 2021, doi.org/10.1016/j.landusepol.2021.105539.
  • W. Coleman, B. Johann, N. Pasternak, J. Vellayan, N. Foutz, and H. Shakeri, “Using machine learning to evaluate real estate prices using location big data,” In Proc. Systems and Information Engineering Design Symp. (SIEDS), 2022, pp. 168-172.
  • C. Haydaroğlu and G. Çevik, “Türkiye’de seçim sistemlerinin demokrasi ve ekonomi ilişkisi çerçevesinde incelenmesi,” Uluslararası Politik Araştırmalar, vol. 2, no. 1, pp. 51-63, 2016, doi: 10.25272/j.2149-8539.2016.2.1.05.
  • H. S. Türk, “Seçim, seçim sistemleri ve anayasal tercih,” Anayasa Yargısı, vol. 22, no. 1, pp. 75-113, 2006.
  • C. Y. Choi, D. Quigley, and X. Wang, “The impacts of local housing markets on US presidential elections: Via the collateral channel,” SSRN, 2023, doi: 10.2139/ssrn.4544008.
  • M. Zimmer, “Home prices and the 2008 presidential election: Evidence from state level data,” The Social Science Journal, vol. 47, no. 2, pp. 439-446, 2010, doi: 10.1016/j.soscij.2009.11.004.
  • B. Aha, D. Higgins, and T. Lee, “UK political cycle and the effect on national house prices: An exploratory study,” In Proc. European Real Estate Society 25th Annu. Conference, 27-30 June, 2018.
  • V. Nguyen and C. Vergara-Alert, “Political uncertainty and housing markets,” Journal of Housing Economics, vol. 61, p. 101952, 2023, doi: 10.1016/j.jhe.2023.101952.
  • E. Cifci, A. Tidwell, J. S. Clements, and A. Jauregui, “Housing performance and the electorate,” Journal of Real Estate Research, vol. 45, no. 4, pp. 462-484, 2023, doi: 10.2765/87943.
  • B. Aha, D. Higgins, and T. Lee, “United Kingdom general elections and the impact on house prices,” International Journal of Housing Markets and Analysis, vol. 16, no. 1, pp. 206-217, 2023, doi: 10.1108/IJHMA-04-2020-0047.
  • S. Monfared and A. Pavlov, “Political risk affects real estate markets,” Journal of Real Estate Finance Economics, vol. 58, pp. 1-20, 2019, doi: 10.1007/s11146-017-9619-y.
  • J. Aizenman and Y. Jinjarak, “Current account patterns and national real estate markets,” Journal of Urban Economics, vol. 66, no. 2, pp. 75-89, 2009, doi: 10.1016/j.jue.2009.05.002.
  • İ. Ö. Badurlar, “Türkiye'de konut fiyatları ile makro ekonomik değişkenler arasındaki ilişkinin araştırılması,” Anadolu University Journal of Social Sciences, vol. 8, no. 1, pp. 223-228, 2008
  • T. Habanabakize and Z. Dickason, “Political risk and macroeconomic effect of housing prices in South Africa,” Cogent Economics and Finance, vol. 10, no. 1, p. 2054525, 2022, doi: 10.1080/23322039.2022.2054525.
  • V. Cohen and L. Karpavičiūtė, “The analysis of the determinants of housing prices,” Independent Journal of Management & Production, vol. 8, no. 1, pp. 49-63, 2017, doi: 10.14807/ijmp.v8i1.521.
  • L. I. U. Yang and H. U. Zhiqiang, “On correlation between RMB exchange rate and real estate price based on financial engineering,” Systems Engineering Procedia, vol. 3, pp. 146-152, 2012, doi: 10.1016/j.sepro.2011.11.020.
  • Xiuzhi, Z. and Xiaoguang, W., “The analysis: The influence of RMB exchange rate fluctuation on real estate price in China,”In Proc. XXIII FIG Congress, Munich, Germany, 2006, pp. 1-9.
  • N. K. Yılmaz, “Investigation of the relationship between gold, dollar, euro exchange rates and housing sales: A study with Granger causality analysis,” Florya Chronicles of Political Economy, vol. 7, no. 2, pp. 169-193, 2021.
  • M. Bahmani-Oskooee and T. P. Wu, “Housing prices and real effective exchange rates in 18 OECD countries: A bootstrap multivariate panel Granger causality,” Economic Analysis and Policy, vol. 60, pp. 119-126, 2018, doi: 10.1016/j.eap.2018.09.005.
  • E. Benson, J. Hansen, A. Schwartz, and G. Smersh, “Canadian/US exchange rates and nonresident investors: Their influence on residential property values,” Journal of Real Estate Research, vol. 18, no. 3, pp. 433-461, 1999, doi: 10.1080/10835547.1999.12091005.
  • N. Miller, M. Sklarz, and N. Real, “Japanese purchases, exchange rates and speculation in residential real estate markets,” Journal of Real Estate Research, vol. 3, no. 3, pp. 39-49, 1988.
  • . J. Lipscomb, J. Harvey, and H. Hunt, “Exchange-rate risk mitigation with price-level-adjusting mortgages: The case of the Mexican UDI,” Journal of Real Estate Research, vol. 25, no. 1, pp. 23-42, 2003, doi: 10.1080/10835547.2003.12091103.
  • H. A. Karadaş and E. Salihoğlu, “Seçili makroekonomik değişkenlerin konut fiyatlarına etkisi: Türkiye örneği,” Ekonomik ve Sosyal Araştırmalar Dergisi, vol. 16, no. 1, pp. 63-80, 2020.
  • O. A. Odhiambo and B. Ombok, “Analysis of inflation, interest rate, exchange rate and real estate residential property prices, Kenya,” The International Journal of Business & Management, vol. 10, no. 11, 2022, doi: 10.24940/theijbm/2022/v10/i11/BM2211-007.
  • A. Derdouri and Y. Murayama, “A comparative study of land price estimation and mapping using regression kriging and machine learning algorithms across Fukushima Prefecture, Japan,” Journal of Geographical Sciences, vol. 30, pp. 794-822, 2020, doi: 10.1007/s11442-020-1756-1.
  • A. Louati, R. Lahyani, A. Aldaej, A. Aldumaykhi, and S. Otai, “Price forecasting for real estate using machine learning: A case study on Riyadh City,” Concurrency and Computation: Practice and Experience, vol. 34, no. 6, 2022, doi: 10.1002/cpe.6748.
  • W. K. Ho, B. S. Tang, and S. W. Wong, “Predicting property prices with machine learning algorithms,” Journal of Property Research, vol. 38, no. 1, pp. 48-70, 2021, doi: 10.1080/09599916.2020.1832558.
  • J. Kim, J. Won, H. Kim, and J. Heo, “Machine-learning-based prediction of land prices in Seoul, South Korea,” Sustainability, vol. 13, no. 23, p. 13088, 2021, doi: 10.3390/su132313088.
  • A. S. Ravikumar, "Real estate price prediction using machine learning," Ph.D. dissertation, National College of Ireland, Dublin, 2017.
  • Türkiye İstatistik Kurumu (TÜİK), “Gayri safi yurt içi hasıla,” 2023. [Online]. Available: https://data.tuik.gov.tr/. [Accessed: 12-Oct-2023].
  • Türkiye İstatistik Kurumu (TÜİK), “Adrese dayalı nüfus kayıt sistemi,” 2023. [Online]. Available: https://data.tuik.gov.tr/. [Accessed: 05-Sep-2023].
  • S. K. Sümer, S. M. Say, and G. Çiçek, "Determining the residue and energy potential of field crops in Çanakkale," Anadolu Tarım Bilimleri Dergisi, vol. 31, no. 2, pp. 240-247, 2016. doi: 10.7161/omuanajas.260980.
  • S. Yücebaş, M. Doğan, and L. Genç, "A C4.5-CART decision tree model for real estate price prediction and the analysis of the underlying features," Konya Journal of Engineering Sciences, vol. 10, no. 1, pp. 147-161, 2022. doi: 10.36306/konjes.1013833.
  • J. K. A. Jack, F. Okyere, and E. K. Amoah, "Effects of exchange rate volatility on real estate prices in developing economies: A case of Ghana," Advances in Social Sciences Research Journal, vol. 6, no. 11, pp. 268-287, 2019. doi: 10.14738/assrj.611.7392.
  • F. K. Gülağız and E. Ekinci, "Farklı regresyon analizi yöntemleri kullanılarak ev fiyatlarının tahmini," In Proceedings of the International Symposium on Industry, vol. 4, pp. 203-207, 2017.
  • X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, and D. Steinberg, "Top 10 algorithms in data mining," Knowledge and Information Systems, vol. 14, pp. 1-37, 2008. doi: 10.1007/s10115-007-0114-2.
  • W. Y. Loh, "Classification and regression trees," Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14-23, 2011. doi: 10.1002/widm.8.
  • R.P. Liu, "Research of decision tree classification algorithm in data mining," Journal of East China Institute of Technology, vol. 9, no. 5, pp. 1-8, 2010.
  • M. Doğruel and S. Ü. Fırat, "Veri madenciliği karar ağaçları kullanarak ülkelerin inovasyon değerlerinin tahmini ve doğrusal regresyon modeli ile karşılaştırmalı bir uygulama," Istanbul Business Research, vol. 50, no. 2, pp. 465-493, 2021. doi: 10.26650/ibr.2021.50.015019.
  • N. J. Nagelkerke, "A note on a general definition of the coefficient of determination," Biometrika, vol. 78, no. 3, pp. 691-692, 1991.
  • C. Wang, "Can RMB exchange rate expectations explain the fluctuations of China’s housing prices?," Journal of Applied Finance Banking, vol. 10, no. 5, pp. 211-233, 2020. doi: 10.47260/jafb/10512.
  • Tapu Kadastro Genel Müdürlüğü, "Parsel sorgu uygulaması, alım satım yoğunluğu," 2023. [Online]. Available: https://parselsorgu.tkgm.gov.tr/. [Accessed: 24-Jan-2024].
  • Tapu Kadastro Genel Müdürlüğü, "Parsel sorgu uygulaması, alım satım yoğunluğu," 2022. [Online]. Available: https://parselsorgu.tkgm.gov.tr/. [Accessed: 24-Jan-2024].
There are 43 citations in total.

Details

Primary Language English
Subjects Land Management
Journal Section Research Article
Authors

Simge Doğan 0000-0001-5085-9540

Levent Genç 0000-0002-0074-0987

Sait Can Yücebaş 0000-0002-1030-3545

Şükran Yalpır 0000-0003-2998-3197

Publication Date March 1, 2025
Submission Date November 5, 2024
Acceptance Date January 21, 2025
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

IEEE S. Doğan, L. Genç, S. C. Yücebaş, and Ş. Yalpır, “ANALYZING THE IMPACT OF THE 2023 GENERAL ELECTIONS ON LAND PRICES USING MACHINE LEARNING: A CASE STUDY IN ÇANAKKALE, TURKEY”, KONJES, vol. 13, no. 1, pp. 147–164, 2025, doi: 10.36306/konjes.1579931.