Research Article
BibTex RIS Cite
Year 2025, Volume: 13 Issue: 1, 294 - 306, 01.03.2025
https://doi.org/10.36306/konjes.1610031

Abstract

References

  • J. Hu, F. Zi, and G. Tian, “Extraction of copper from chalcopyrite with potassium dichromate in 1-ethyl-3-methylimidazolium hydrogen sulfate ionic liquid aqueous solution,” Minerals Engineering, vol. 172, p. 107179, 2021, doi: https://doi.org/10.1016/j.mineng.2021.107179
  • G. Ji, Y. Liao, Y. Wu, J. Xi, and Q. Liu, “A review on the research of hydrometallurgical leaching of low-grade complex chalcopyrite,” Journal of Sustainable Metallurgy, vol. 8, no. 3, pp. 964–977, 2022, doi: https://doi.org/10.1007/s40831-022-00561-5
  • L. Xiao et al., “An environmentally friendly process to selectively recover silver from copper anode slime,” Journal of Cleaner Production, vol. 187, pp. 708–716, 2018, doi: https://doi.org/10.1016/j.jclepro.2018.03.203
  • K. Binnemans and P. T. Jones, “The twelve principles of circular hydrometallurgy,” Journal of Sustainable Metallurgy, vol. 9, no. 1, pp. 1–25, 2023, doi: https://doi.org/10.1007/s40831-022-00636-3
  • X. Li, W. Monnens, Z. Li, J. Fransaer, and K. Binnemans, “Solvometallurgical process for extraction of copper from chalcopyrite and other sulfidic ore minerals,” Green Chemistry, vol. 22, no. 2, pp. 417–426, 2020, doi: https://doi.org/10.1039/C9GC02983D
  • K. Kurniawan, S. Kim, M. Bae, A. Chagnes, and J. Lee, “Investigation on solvometallurgical processes for extraction of metals from sulfides,” Minerals Engineering, vol. 218, p. 109005, 2024, doi: https://doi.org/10.1016/j.mineng.2024.109005
  • K. A. Omar and R. Sadeghi, “Physicochemical properties of deep eutectic solvents: A review,” Journal of Molecular Liqiud, vol. 360, p. 119524, 2022, doi: https://doi.org/10.1016/j.molliq.2022.119524
  • A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, “Novel solvent properties of choline chloride/urea mixtures,” Chemical Communications, no. 1, pp. 70–71, 2003, doi: https://doi.org/10.1039/B210714G
  • A. P. Abbott, G. Capper, D. L. Davies, K. J. McKenzie, and S. U. Obi, “Solubility of metal oxides in deep eutectic solvents based on choline chloride,” Journal of Chemical & Engineering Data, vol. 51, no. 4, pp. 1280–1282, Jul. 2006, doi: https://doi.org/10.1021/je060038c
  • A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed, “Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids,” Journal of the American Chemical Society, vol. 126, no. 29, pp. 9142–9147, Jul. 2004, doi: https://doi.org/10.1021/ja048266j
  • N. Peeters, K. Binnemans, and S. Riaño, “Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents,” Green Chemistry, vol. 22, no. 13, pp. 4210–4221, 2020, doi: https://doi.org/10.1039/D0GC00940G
  • Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jérôme, “Deep eutectic solvents: syntheses, properties and applications,” Chemical Society Reviews, vol. 41, no. 21, pp. 7108–7146, 2012, doi: https://doi.org/10.1039/C2CS35178A
  • B. B. Hansen et al., “Deep eutectic Solvents: A review of fundamentals and applications,” Chemicals Reviews, vol. 121, no. 3, pp. 1232–1285, Feb. 2021, doi: https://doi.org/10.1021/acs.chemrev.0c00385
  • T. El Achkar, H. Greige-Gerges, and S. Fourmentin, “Basics and properties of deep eutectic solvents: a review,” Environmental Chemistry Letters, vol. 19, no. 4, pp. 3397–3408, 2021, doi: https://doi.org/10.1007/s10311-021-01225-8
  • S. Suffia and D. Dutta, “Applications of deep eutectic solvents in metal recovery from E-wastes in a sustainable way,” Journal of Molecular Liqiud, vol. 394, p. 123738, 2024, doi: https://doi.org/10.1016/j.molliq.2023.123738
  • M. I. Martín, I. García-Díaz, and F. A. López, “Properties and perspective of using deep eutectic solvents for hydrometallurgy metal recovery,” Minerals Engineering, vol. 203, p. 108306, 2023, doi: https://doi.org/10.1016/j.mineng.2023.108306
  • S. Anggara et al., “Direct extraction of copper from copper sulfide minerals using deep eutectic solvents,” Green Chemistry, vol. 21, no. 23, pp. 6502–6512, 2019, doi: https://doi.org/10.1039/C9GC03213D
  • Q. Zhao, S. Ma, W. Ho, Y. Wang, J. Y. T. Ho, and K. Shih, “Simple and environmentally friendly metal recovery from waste printed circuit boards by using deep eutectic solvents,” Journal of Cleaner Production, vol. 421, p. 138508, 2023, doi: https://doi.org/10.1016/j.jclepro.2023.138508
  • M. A. Topçu, S. A. Çeltek, and A. Rüşen, “Green leaching and predictive model for copper recovery from waste smelting slag with choline chloride-based deep eutectic solvent,” Chinese Journal of Chemical Engineering, vol. 75, pp. 14–24, 2024, doi: https://doi.org/10.1016/j.cjche.2024.07.005
  • D. Haro, P. García-Muñoz, M. Mola, F. Fresno, and J. Rodríguez-Chueca, “Atacamite (Cu2Cl(OH)3) as catalyst of different AOPs for water disinfection,” Catalysis Today, vol. 429, p. 114496, 2024, doi: https://doi.org/10.1016/j.cattod.2023.114496
  • H. Xie, L. Zhu, W. Zheng, J. Zhang, F. Gao, and Y. Wang, “Microwave-assisted template-free synthesis of butterfly-like CuO through Cu2Cl(OH)3 precursor and the electrochemical sensing property,” Solid State Sciences, vol. 61, pp. 146–154, 2016, doi: https://doi.org/10.1016/j.solidstatesciences.2016.09.017
  • C. Zhu, C. Chen, L. Hao, Y. Hu, and Z. Chen, “Template-free synthesis of Cu2Cl(OH)3 nanoribbons and use as sacrificial template for CuO nanoribbon,” Journal of Crystal Growth, vol. 263, no. 1, pp. 473–479, 2004, doi: https://doi.org/10.1016/j.jcrysgro.2003.11.003
  • M. V. B. do Nascimento et al., “Sonochemical-driven synthesis of synthetic Atacamite - β-Cu2 (OH)3Cl: Structure, and its antifungal activity,” Nano-Structure and Nano-Objects, vol. 34, p. 100958, 2023, doi: https://doi.org/10.1016/j.nanoso.2023.100958
  • Z. Yuan, H. Liu, W. F. Yong, Q. She, and J. Esteban, “Status and advances of deep eutectic solvents for metal separation and recovery,” Green Chemistry, vol. 24, no. 5, pp. 1895–1929, 2022, doi: https://doi.org/10.1039/D1GC03851F
  • Z. Jie et al., “Fabrication of octahedral Atacamite microcrystals via a hydrothermal route,” Micro and Nano Letters, vol. 6, no. 3, pp. 119–121, Mar. 2011, doi: https://doi.org/10.1049/mnl.2010.0217
  • Z. Liu, Y. Zong, H. Li, D. Jia, and Z. Zhao, “Selectively recovering scandium from high alkali Bayer red mud without impurities of iron, titanium and gallium,” Journal of Rare Earths, vol. 35, no. 9, pp. 896–905, 2017, doi: https://doi.org/10.1016/S1002-0721(17)60992-X
  • C.-Z. Liao, L. Zeng, and K. Shih, “Quantitative X-ray Diffraction (QXRD) analysis for revealing thermal transformations of red mud,” Chemosphere, vol. 131, pp. 171–177, 2015, doi: https://doi.org/10.1016/j.chemosphere.2015.03.034
  • X. Liu, L. Xu, Y. Huang, H. Cheng, and H. J. Seo, “Paratacamite phase stability and improved optical properties of Cu2(OH)3Cl crystal via Ni-doping,” Materials & Design, vol. 121, pp. 194–201, 2017, doi: https://doi.org/10.1016/j.matdes.2017.02.071

COPPER EXTRACTION FROM DEEP EUTECTIC SOLVENT AS ATACAMITE BY HYDROLYSIS METHOD

Year 2025, Volume: 13 Issue: 1, 294 - 306, 01.03.2025
https://doi.org/10.36306/konjes.1610031

Abstract

Deep eutectic solvents (DESs) have garnered as promising alternatives to conventional solvents for metal extraction due to their facile synthesis, high chloride concentration, non-aqueous nature, and low cost. This work explores a green route for ultrafast extraction of atacamite [Cu2Cl(OH)3] from a deep eutectic solvent at room temperature in a short time using copper (II) sulfate pentahydrate as a precursor. The phase, chemical, morphological, and structural properties of the extracted atacamite were investigated using XRD, Rietveld method, SEM-EDX, and FTIR techniques. As a result of XRD analysis, it was determined that the atacamite with an average diameter of 85.59 µm has an orthorhombic crystal structure. Also, it was determined that the crystal structure parameters obtained from XRD and the theoretical calculations of these values were in good agreement according to the Rietveld refinement. SEM/EDX analysis showed that the extracted atacamite particles exhibited heterogeneity in terms of size and morphology, while elemental composition was found to be homogeneous throughout the particles. UV-Vis analysis and theoretical calculations, the optical band of atacamite particles was found as 2.72 eV. Also, this study demonstrates that the hydrolysis method can serve as an efficient, low-energy pathway for the recovery of metals from DESs, highlighting its potential as a novel approach in copper metallurgy.

Ethical Statement

The author followed all ethical guidelines, including authorship, citation, data reporting, and publishing original research.

Supporting Institution

The authors declares that there is no financial support.

References

  • J. Hu, F. Zi, and G. Tian, “Extraction of copper from chalcopyrite with potassium dichromate in 1-ethyl-3-methylimidazolium hydrogen sulfate ionic liquid aqueous solution,” Minerals Engineering, vol. 172, p. 107179, 2021, doi: https://doi.org/10.1016/j.mineng.2021.107179
  • G. Ji, Y. Liao, Y. Wu, J. Xi, and Q. Liu, “A review on the research of hydrometallurgical leaching of low-grade complex chalcopyrite,” Journal of Sustainable Metallurgy, vol. 8, no. 3, pp. 964–977, 2022, doi: https://doi.org/10.1007/s40831-022-00561-5
  • L. Xiao et al., “An environmentally friendly process to selectively recover silver from copper anode slime,” Journal of Cleaner Production, vol. 187, pp. 708–716, 2018, doi: https://doi.org/10.1016/j.jclepro.2018.03.203
  • K. Binnemans and P. T. Jones, “The twelve principles of circular hydrometallurgy,” Journal of Sustainable Metallurgy, vol. 9, no. 1, pp. 1–25, 2023, doi: https://doi.org/10.1007/s40831-022-00636-3
  • X. Li, W. Monnens, Z. Li, J. Fransaer, and K. Binnemans, “Solvometallurgical process for extraction of copper from chalcopyrite and other sulfidic ore minerals,” Green Chemistry, vol. 22, no. 2, pp. 417–426, 2020, doi: https://doi.org/10.1039/C9GC02983D
  • K. Kurniawan, S. Kim, M. Bae, A. Chagnes, and J. Lee, “Investigation on solvometallurgical processes for extraction of metals from sulfides,” Minerals Engineering, vol. 218, p. 109005, 2024, doi: https://doi.org/10.1016/j.mineng.2024.109005
  • K. A. Omar and R. Sadeghi, “Physicochemical properties of deep eutectic solvents: A review,” Journal of Molecular Liqiud, vol. 360, p. 119524, 2022, doi: https://doi.org/10.1016/j.molliq.2022.119524
  • A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, “Novel solvent properties of choline chloride/urea mixtures,” Chemical Communications, no. 1, pp. 70–71, 2003, doi: https://doi.org/10.1039/B210714G
  • A. P. Abbott, G. Capper, D. L. Davies, K. J. McKenzie, and S. U. Obi, “Solubility of metal oxides in deep eutectic solvents based on choline chloride,” Journal of Chemical & Engineering Data, vol. 51, no. 4, pp. 1280–1282, Jul. 2006, doi: https://doi.org/10.1021/je060038c
  • A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed, “Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids,” Journal of the American Chemical Society, vol. 126, no. 29, pp. 9142–9147, Jul. 2004, doi: https://doi.org/10.1021/ja048266j
  • N. Peeters, K. Binnemans, and S. Riaño, “Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents,” Green Chemistry, vol. 22, no. 13, pp. 4210–4221, 2020, doi: https://doi.org/10.1039/D0GC00940G
  • Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jérôme, “Deep eutectic solvents: syntheses, properties and applications,” Chemical Society Reviews, vol. 41, no. 21, pp. 7108–7146, 2012, doi: https://doi.org/10.1039/C2CS35178A
  • B. B. Hansen et al., “Deep eutectic Solvents: A review of fundamentals and applications,” Chemicals Reviews, vol. 121, no. 3, pp. 1232–1285, Feb. 2021, doi: https://doi.org/10.1021/acs.chemrev.0c00385
  • T. El Achkar, H. Greige-Gerges, and S. Fourmentin, “Basics and properties of deep eutectic solvents: a review,” Environmental Chemistry Letters, vol. 19, no. 4, pp. 3397–3408, 2021, doi: https://doi.org/10.1007/s10311-021-01225-8
  • S. Suffia and D. Dutta, “Applications of deep eutectic solvents in metal recovery from E-wastes in a sustainable way,” Journal of Molecular Liqiud, vol. 394, p. 123738, 2024, doi: https://doi.org/10.1016/j.molliq.2023.123738
  • M. I. Martín, I. García-Díaz, and F. A. López, “Properties and perspective of using deep eutectic solvents for hydrometallurgy metal recovery,” Minerals Engineering, vol. 203, p. 108306, 2023, doi: https://doi.org/10.1016/j.mineng.2023.108306
  • S. Anggara et al., “Direct extraction of copper from copper sulfide minerals using deep eutectic solvents,” Green Chemistry, vol. 21, no. 23, pp. 6502–6512, 2019, doi: https://doi.org/10.1039/C9GC03213D
  • Q. Zhao, S. Ma, W. Ho, Y. Wang, J. Y. T. Ho, and K. Shih, “Simple and environmentally friendly metal recovery from waste printed circuit boards by using deep eutectic solvents,” Journal of Cleaner Production, vol. 421, p. 138508, 2023, doi: https://doi.org/10.1016/j.jclepro.2023.138508
  • M. A. Topçu, S. A. Çeltek, and A. Rüşen, “Green leaching and predictive model for copper recovery from waste smelting slag with choline chloride-based deep eutectic solvent,” Chinese Journal of Chemical Engineering, vol. 75, pp. 14–24, 2024, doi: https://doi.org/10.1016/j.cjche.2024.07.005
  • D. Haro, P. García-Muñoz, M. Mola, F. Fresno, and J. Rodríguez-Chueca, “Atacamite (Cu2Cl(OH)3) as catalyst of different AOPs for water disinfection,” Catalysis Today, vol. 429, p. 114496, 2024, doi: https://doi.org/10.1016/j.cattod.2023.114496
  • H. Xie, L. Zhu, W. Zheng, J. Zhang, F. Gao, and Y. Wang, “Microwave-assisted template-free synthesis of butterfly-like CuO through Cu2Cl(OH)3 precursor and the electrochemical sensing property,” Solid State Sciences, vol. 61, pp. 146–154, 2016, doi: https://doi.org/10.1016/j.solidstatesciences.2016.09.017
  • C. Zhu, C. Chen, L. Hao, Y. Hu, and Z. Chen, “Template-free synthesis of Cu2Cl(OH)3 nanoribbons and use as sacrificial template for CuO nanoribbon,” Journal of Crystal Growth, vol. 263, no. 1, pp. 473–479, 2004, doi: https://doi.org/10.1016/j.jcrysgro.2003.11.003
  • M. V. B. do Nascimento et al., “Sonochemical-driven synthesis of synthetic Atacamite - β-Cu2 (OH)3Cl: Structure, and its antifungal activity,” Nano-Structure and Nano-Objects, vol. 34, p. 100958, 2023, doi: https://doi.org/10.1016/j.nanoso.2023.100958
  • Z. Yuan, H. Liu, W. F. Yong, Q. She, and J. Esteban, “Status and advances of deep eutectic solvents for metal separation and recovery,” Green Chemistry, vol. 24, no. 5, pp. 1895–1929, 2022, doi: https://doi.org/10.1039/D1GC03851F
  • Z. Jie et al., “Fabrication of octahedral Atacamite microcrystals via a hydrothermal route,” Micro and Nano Letters, vol. 6, no. 3, pp. 119–121, Mar. 2011, doi: https://doi.org/10.1049/mnl.2010.0217
  • Z. Liu, Y. Zong, H. Li, D. Jia, and Z. Zhao, “Selectively recovering scandium from high alkali Bayer red mud without impurities of iron, titanium and gallium,” Journal of Rare Earths, vol. 35, no. 9, pp. 896–905, 2017, doi: https://doi.org/10.1016/S1002-0721(17)60992-X
  • C.-Z. Liao, L. Zeng, and K. Shih, “Quantitative X-ray Diffraction (QXRD) analysis for revealing thermal transformations of red mud,” Chemosphere, vol. 131, pp. 171–177, 2015, doi: https://doi.org/10.1016/j.chemosphere.2015.03.034
  • X. Liu, L. Xu, Y. Huang, H. Cheng, and H. J. Seo, “Paratacamite phase stability and improved optical properties of Cu2(OH)3Cl crystal via Ni-doping,” Materials & Design, vol. 121, pp. 194–201, 2017, doi: https://doi.org/10.1016/j.matdes.2017.02.071
There are 28 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Article
Authors

Mehmet Ali Topçu 0000-0002-0007-5665

Publication Date March 1, 2025
Submission Date December 30, 2024
Acceptance Date February 13, 2025
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

IEEE M. A. Topçu, “COPPER EXTRACTION FROM DEEP EUTECTIC SOLVENT AS ATACAMITE BY HYDROLYSIS METHOD”, KONJES, vol. 13, no. 1, pp. 294–306, 2025, doi: 10.36306/konjes.1610031.