Research Article
BibTex RIS Cite

Year 2017, Volume: 5 Issue: 1, 68 - 76, 01.04.2017
https://izlik.org/JA72ZG69KW

Abstract

References

  • [1] Z. Ben Nahia, N. Ben Salem: Spherical harmonics and applications associated with the Weinstein operator. Potential theoryICPT 94 (Kouty, 1994), 233241, de Gruyter, Berlin, 1996.
  • [2] Z. Ben Nahia , N. Ben Salem: On a mean value property associated with the Weinstein operator. Potential theoryICPT 94 (Kouty, 1994), 243253, de Gruyter, Berlin, 1996.
  • [3] N. Ben Salem , AR. Nasr: Heisenberg-type inequalities for the Weinstein operator. Integral Transforms Spec. Funct. 26 (2015), no. 9, 700718.
  • [4] A. Bonami, B. Demange, Ph. Jaming: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoamericana 19 (2003), no. 1, 2355.
  • [5] M. Brelot: quation de Weinstein et potentiels de Marcel Riesz. (French) Sminaire de Thorie du Potentiel, No. 3 (Paris, 1976/1977), pp. 1838, Lecture Notes in Math., 681, Springer, Berlin, 1978.
  • [6] S. Ghobber: Phase space localization of orthonormal sequences in L2 (R+). J. Approx. Theory 189 (2015), 123136.
  • [7] S. Ghobber,Ph. Jaming: Uncertainty principles for integral operators. Studia Math. 220 (2014), no. 3, 197220.
  • [8] S. Ghobber, S. Omri: Time-frequency concentration of the windowed Hankel transform. Integral Transforms Spec. Funct. 25 (2014), no. 6, 481496.
  • [9] I. Gohberg, S. Goldberg and N. Krupnik: Traces and determinants of linear operators. Operator Theory: Advances and Applications, 116. Birkhuser Verlag, Basel, 2000.
  • [10] Ph. Jaming, A. Powell: Uncertainty principles for orthonormal sequences. J. Funct. Anal. 243 (2007), no. 2, 611630.
  • [11] E. Malinnikova: Orthonormal sequences in L2(Rd) and time frequency localization. J. Fourier Anal. Appl. 16 (2010), no. 6, 9831006.
  • [12] H. Mejjaoli, A. Ould Ahmed Salem: Weinstein Gabor transform and applications. Advances in Pure Math J. 2012;2:203-210.
  • [13] H. Mejjaoli, M. Salhi: Uncertainty principles for theWeinstein transform. Czechoslovak Math. J. 61(136) (2011), no. 4, 941974.
  • [14] A. Weinstein: Singular partial di erential equations and their applications. 1962 Fluid Dynamics and Applied Mathematics (Proc. Sympos., Univ. of Maryland, 1961) pp. 2949 Gordon and Breach, New York.
  • [15] H.S. Shapiro: Uncertainty principles for basis in L2(R). Unpublished manuscript.

SHAPIRO TYPE INEQUALITIES FOR THE WEINSTEIN AND THE WEINSTEIN-GABOR TRANSFORMS

Year 2017, Volume: 5 Issue: 1, 68 - 76, 01.04.2017
https://izlik.org/JA72ZG69KW

Abstract

The aim of this paper is to prove new uncertainty principles for the Weinstein and the Weinstein-Gabor transforms associated with the Weinstein operator dened on the half  space $\mathbb{R}^d_{+}$ by $\Delta_W =\sum_{i=1}^{d } \frac{\partial}{\partial x_i^2}+ \frac{2\alpha+1}{x_{d}}\frac{\partial}{\partial x_{d-1}};\ \ \ \ \ d\ge2,\ \alpha>-1/2.$ More precisely, we give a Shapiro-type uncertainty inequality for the Weinstein transform that is, for $s>0$ and $\{\phi_n\}_n$ be an orthonormal sequence in $L^2_\alpha(\mathbb{R}^d_{+})$, $\sum_{n=1}^N(\Vert \vert x\vert^s \phi_n\Vert_{{L_\alpha^2(\mathbb{R}^d_{+})}}^{2}+ \Vert \vert\xi\vert^s \mathcal{F}_W(\phi_n)\Vert_{{L_\alpha^2(\mathbb{R}^d_{+})}}^{2 })\geq KN^{1+\frac{s}{2\alpha+d+1}},$ where $K$ is a constant which depends only on $d$; $s$ and $\alpha$. Next, we establish an analogous inequality for the Weinstein-Gabor transform

References

  • [1] Z. Ben Nahia, N. Ben Salem: Spherical harmonics and applications associated with the Weinstein operator. Potential theoryICPT 94 (Kouty, 1994), 233241, de Gruyter, Berlin, 1996.
  • [2] Z. Ben Nahia , N. Ben Salem: On a mean value property associated with the Weinstein operator. Potential theoryICPT 94 (Kouty, 1994), 243253, de Gruyter, Berlin, 1996.
  • [3] N. Ben Salem , AR. Nasr: Heisenberg-type inequalities for the Weinstein operator. Integral Transforms Spec. Funct. 26 (2015), no. 9, 700718.
  • [4] A. Bonami, B. Demange, Ph. Jaming: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoamericana 19 (2003), no. 1, 2355.
  • [5] M. Brelot: quation de Weinstein et potentiels de Marcel Riesz. (French) Sminaire de Thorie du Potentiel, No. 3 (Paris, 1976/1977), pp. 1838, Lecture Notes in Math., 681, Springer, Berlin, 1978.
  • [6] S. Ghobber: Phase space localization of orthonormal sequences in L2 (R+). J. Approx. Theory 189 (2015), 123136.
  • [7] S. Ghobber,Ph. Jaming: Uncertainty principles for integral operators. Studia Math. 220 (2014), no. 3, 197220.
  • [8] S. Ghobber, S. Omri: Time-frequency concentration of the windowed Hankel transform. Integral Transforms Spec. Funct. 25 (2014), no. 6, 481496.
  • [9] I. Gohberg, S. Goldberg and N. Krupnik: Traces and determinants of linear operators. Operator Theory: Advances and Applications, 116. Birkhuser Verlag, Basel, 2000.
  • [10] Ph. Jaming, A. Powell: Uncertainty principles for orthonormal sequences. J. Funct. Anal. 243 (2007), no. 2, 611630.
  • [11] E. Malinnikova: Orthonormal sequences in L2(Rd) and time frequency localization. J. Fourier Anal. Appl. 16 (2010), no. 6, 9831006.
  • [12] H. Mejjaoli, A. Ould Ahmed Salem: Weinstein Gabor transform and applications. Advances in Pure Math J. 2012;2:203-210.
  • [13] H. Mejjaoli, M. Salhi: Uncertainty principles for theWeinstein transform. Czechoslovak Math. J. 61(136) (2011), no. 4, 941974.
  • [14] A. Weinstein: Singular partial di erential equations and their applications. 1962 Fluid Dynamics and Applied Mathematics (Proc. Sympos., Univ. of Maryland, 1961) pp. 2949 Gordon and Breach, New York.
  • [15] H.S. Shapiro: Uncertainty principles for basis in L2(R). Unpublished manuscript.
There are 15 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

NEJIB Ben Salem This is me

Amgad Rashed Nasr

Submission Date July 11, 2015
Acceptance Date July 1, 2016
Publication Date April 1, 2017
IZ https://izlik.org/JA72ZG69KW
Published in Issue Year 2017 Volume: 5 Issue: 1

Cite

APA Ben Salem, N., & Rashed Nasr, A. (2017). SHAPIRO TYPE INEQUALITIES FOR THE WEINSTEIN AND THE WEINSTEIN-GABOR TRANSFORMS. Konuralp Journal of Mathematics, 5(1), 68-76. https://izlik.org/JA72ZG69KW
AMA 1.Ben Salem N, Rashed Nasr A. SHAPIRO TYPE INEQUALITIES FOR THE WEINSTEIN AND THE WEINSTEIN-GABOR TRANSFORMS. Konuralp J. Math. 2017;5(1):68-76. https://izlik.org/JA72ZG69KW
Chicago Ben Salem, NEJIB, and Amgad Rashed Nasr. 2017. “SHAPIRO TYPE INEQUALITIES FOR THE WEINSTEIN AND THE WEINSTEIN-GABOR TRANSFORMS”. Konuralp Journal of Mathematics 5 (1): 68-76. https://izlik.org/JA72ZG69KW.
EndNote Ben Salem N, Rashed Nasr A (April 1, 2017) SHAPIRO TYPE INEQUALITIES FOR THE WEINSTEIN AND THE WEINSTEIN-GABOR TRANSFORMS. Konuralp Journal of Mathematics 5 1 68–76.
IEEE [1]N. Ben Salem and A. Rashed Nasr, “SHAPIRO TYPE INEQUALITIES FOR THE WEINSTEIN AND THE WEINSTEIN-GABOR TRANSFORMS”, Konuralp J. Math., vol. 5, no. 1, pp. 68–76, Apr. 2017, [Online]. Available: https://izlik.org/JA72ZG69KW
ISNAD Ben Salem, NEJIB - Rashed Nasr, Amgad. “SHAPIRO TYPE INEQUALITIES FOR THE WEINSTEIN AND THE WEINSTEIN-GABOR TRANSFORMS”. Konuralp Journal of Mathematics 5/1 (April 1, 2017): 68-76. https://izlik.org/JA72ZG69KW.
JAMA 1.Ben Salem N, Rashed Nasr A. SHAPIRO TYPE INEQUALITIES FOR THE WEINSTEIN AND THE WEINSTEIN-GABOR TRANSFORMS. Konuralp J. Math. 2017;5:68–76.
MLA Ben Salem, NEJIB, and Amgad Rashed Nasr. “SHAPIRO TYPE INEQUALITIES FOR THE WEINSTEIN AND THE WEINSTEIN-GABOR TRANSFORMS”. Konuralp Journal of Mathematics, vol. 5, no. 1, Apr. 2017, pp. 68-76, https://izlik.org/JA72ZG69KW.
Vancouver 1.Ben Salem N, Rashed Nasr A. SHAPIRO TYPE INEQUALITIES FOR THE WEINSTEIN AND THE WEINSTEIN-GABOR TRANSFORMS. Konuralp J. Math. [Internet]. 2017 Apr. 1;5(1):68-76. Available from: https://izlik.org/JA72ZG69KW
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.