Research Article
BibTex RIS Cite

Year 2017, Volume: 5 Issue: 1, 99 - 105, 01.04.2017
https://izlik.org/JA32UK22PB

Abstract

References

  • [1] E. A. Al Zahran, H. El Mir and M. A. Mourou: Intertwining operators associated with a Dunkl type operator on the real line and applications. Far East J. Appl. Math. Appl. 64(2), 129-144 (2012).
  • [2] E. A. Al Zahrani and M. A. Mourou: The continuous wavelet transform associated with a Dunkl type operator on the real line. Adv. Pure Math. 3(5), 443-450 (2013).
  • [3] E. C. Titchmarsh: Introduction to the theory of Fourier integrals. Claredon, oxford, (1948), Komkniga. Moxow. (2005).
  • [4] E. S. Belkina and S. S. Platonov: Equivalence of K-functionals and modulus of smoothness constructed by generalized Dunkl translations. Izv. Vyssh. Uchebn. Zaved. Mat 8, 315 (2008).
  • [5] R. F. Al Subaie and M. A. Mourou: Equivalence of K-functionals and modulus of smoothness generated by a generalized Dunkl operator on the real line. Adv. Pure Math. 5(6), 367-376 (2015).
  • [6] R. F. Al Subaie and M. A. Mourou: The equivalence theorem for a K-functional and a modulus of smoothness constructed by a singular differential-difference operator on R. BJMCS, 10(4), 1-14 (2015). DOI: 10.9734/BJMCS/2015/19652.

$Q$-FOURIER LIPSCHITZ FUNCTIONS FOR THE GENERALIZED FOURIER TRANSFORM IN SPACE $L^{2}_{Q}(\mathbb{R})$

Year 2017, Volume: 5 Issue: 1, 99 - 105, 01.04.2017
https://izlik.org/JA32UK22PB

Abstract

In this paper, we prove the generalization of Titchmarsh's theorem for the generalized Fourier transform for functions satisfying the $Q$-Fourier Lipschitz condition in the space $L^{2}_{Q}(\mathbb{R})$.

References

  • [1] E. A. Al Zahran, H. El Mir and M. A. Mourou: Intertwining operators associated with a Dunkl type operator on the real line and applications. Far East J. Appl. Math. Appl. 64(2), 129-144 (2012).
  • [2] E. A. Al Zahrani and M. A. Mourou: The continuous wavelet transform associated with a Dunkl type operator on the real line. Adv. Pure Math. 3(5), 443-450 (2013).
  • [3] E. C. Titchmarsh: Introduction to the theory of Fourier integrals. Claredon, oxford, (1948), Komkniga. Moxow. (2005).
  • [4] E. S. Belkina and S. S. Platonov: Equivalence of K-functionals and modulus of smoothness constructed by generalized Dunkl translations. Izv. Vyssh. Uchebn. Zaved. Mat 8, 315 (2008).
  • [5] R. F. Al Subaie and M. A. Mourou: Equivalence of K-functionals and modulus of smoothness generated by a generalized Dunkl operator on the real line. Adv. Pure Math. 5(6), 367-376 (2015).
  • [6] R. F. Al Subaie and M. A. Mourou: The equivalence theorem for a K-functional and a modulus of smoothness constructed by a singular differential-difference operator on R. BJMCS, 10(4), 1-14 (2015). DOI: 10.9734/BJMCS/2015/19652.
There are 6 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

S. El Ouadıh

R. Daher

Submission Date February 17, 2017
Acceptance Date August 23, 2016
Publication Date April 1, 2017
IZ https://izlik.org/JA32UK22PB
Published in Issue Year 2017 Volume: 5 Issue: 1

Cite

APA Ouadıh, S. E., & Daher, R. (2017). $Q$-FOURIER LIPSCHITZ FUNCTIONS FOR THE GENERALIZED FOURIER TRANSFORM IN SPACE $L^{2}_{Q}(\mathbb{R})$. Konuralp Journal of Mathematics, 5(1), 99-105. https://izlik.org/JA32UK22PB
AMA 1.Ouadıh SE, Daher R. $Q$-FOURIER LIPSCHITZ FUNCTIONS FOR THE GENERALIZED FOURIER TRANSFORM IN SPACE $L^{2}_{Q}(\mathbb{R})$. Konuralp J. Math. 2017;5(1):99-105. https://izlik.org/JA32UK22PB
Chicago Ouadıh, S. El, and R. Daher. 2017. “$Q$-FOURIER LIPSCHITZ FUNCTIONS FOR THE GENERALIZED FOURIER TRANSFORM IN SPACE $L^{2}_{Q}(\mathbb{R})$”. Konuralp Journal of Mathematics 5 (1): 99-105. https://izlik.org/JA32UK22PB.
EndNote Ouadıh SE, Daher R (April 1, 2017) $Q$-FOURIER LIPSCHITZ FUNCTIONS FOR THE GENERALIZED FOURIER TRANSFORM IN SPACE $L^{2}_{Q}(\mathbb{R})$. Konuralp Journal of Mathematics 5 1 99–105.
IEEE [1]S. E. Ouadıh and R. Daher, “$Q$-FOURIER LIPSCHITZ FUNCTIONS FOR THE GENERALIZED FOURIER TRANSFORM IN SPACE $L^{2}_{Q}(\mathbb{R})$”, Konuralp J. Math., vol. 5, no. 1, pp. 99–105, Apr. 2017, [Online]. Available: https://izlik.org/JA32UK22PB
ISNAD Ouadıh, S. El - Daher, R. “$Q$-FOURIER LIPSCHITZ FUNCTIONS FOR THE GENERALIZED FOURIER TRANSFORM IN SPACE $L^{2}_{Q}(\mathbb{R})$”. Konuralp Journal of Mathematics 5/1 (April 1, 2017): 99-105. https://izlik.org/JA32UK22PB.
JAMA 1.Ouadıh SE, Daher R. $Q$-FOURIER LIPSCHITZ FUNCTIONS FOR THE GENERALIZED FOURIER TRANSFORM IN SPACE $L^{2}_{Q}(\mathbb{R})$. Konuralp J. Math. 2017;5:99–105.
MLA Ouadıh, S. El, and R. Daher. “$Q$-FOURIER LIPSCHITZ FUNCTIONS FOR THE GENERALIZED FOURIER TRANSFORM IN SPACE $L^{2}_{Q}(\mathbb{R})$”. Konuralp Journal of Mathematics, vol. 5, no. 1, Apr. 2017, pp. 99-105, https://izlik.org/JA32UK22PB.
Vancouver 1.Ouadıh SE, Daher R. $Q$-FOURIER LIPSCHITZ FUNCTIONS FOR THE GENERALIZED FOURIER TRANSFORM IN SPACE $L^{2}_{Q}(\mathbb{R})$. Konuralp J. Math. [Internet]. 2017 Apr. 1;5(1):99-105. Available from: https://izlik.org/JA32UK22PB
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.