Research Article
BibTex RIS Cite

TRIVARIATE FIBONACCI AND LUCAS POLYNOMIALS

Year 2016, Volume: 4 Issue: 2, 247 - 254, 01.10.2016

Abstract

In this article, we study the Trivariate Fibonacci and Lucas poly- nomials. The classical Tribonacci numbers and Tribonacci polynomials are the special cases of the trivariate Fibonacci polynomials. Also, we obtain some properties of the trivariate Fibonacci and Lucas polynomials. Using these properties, we give some results for the Tribonacci numbers and Tribonacci polynomials.

References

  • [1] Alladi, K., Hoggatt, V.E., On Tribonacci Numbers and Related Functions, The Fibonacci Quarterly, 15, 42-45, 1977.
  • [2] Feng, J., More Identities on the Tribonacci Numbers, Ars Combinatoria, 100, 73-78, 2011.
  • [3] Hoggatt, V.E., Bicknell, M., Generalized Fibonacci Polynomials, The Fibonacci Quarterly,11, 457-465, 1973.
  • [4] Koshy, T., Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publica- tion, 2001
  • [5] Kuhapatanakul, K., Sukruan, L., The Generalized Tribonacci Numbers with Negative Sub- scripts, Integers 14, 2014.
  • [6] Lin, Pin-Yen., De Moivre-Type Identities for the Tribonacci Numbers, The Fibonacci Quar- terly, 26(2), 131-134, 1988.
  • [7] McCarty, C.P., A Formula for Tribonacci Numbers, The Fibonacci Quarterly, 19, 391-393, 1981.
  • [8] Pethe, S., Some Identities for Tribonacci Sequences, The Fibonacci Quarterly, 26, 144-151, 1988.
  • [9] Ramirez, J. L., Sirvent, V.F., Incomplete Tribonacci Numbers and Polynomials, Journal of Integer Sequences,17, Article 14.4.2, 2014.
  • [10] Spickerman, W.R., Binet's Formula for the Tribonacci Sequence, The Fibonacci Quaeterly, 20(2), 118-120, 1982.
  • [11] Tan, M., Zhang, Y., A Note on Bivariate and Trivariate Fibonacci Polynomials, Southeast Asian Bulletin of Mathematics, 29, 975-990, 2005.

Year 2016, Volume: 4 Issue: 2, 247 - 254, 01.10.2016

Abstract

References

  • [1] Alladi, K., Hoggatt, V.E., On Tribonacci Numbers and Related Functions, The Fibonacci Quarterly, 15, 42-45, 1977.
  • [2] Feng, J., More Identities on the Tribonacci Numbers, Ars Combinatoria, 100, 73-78, 2011.
  • [3] Hoggatt, V.E., Bicknell, M., Generalized Fibonacci Polynomials, The Fibonacci Quarterly,11, 457-465, 1973.
  • [4] Koshy, T., Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publica- tion, 2001
  • [5] Kuhapatanakul, K., Sukruan, L., The Generalized Tribonacci Numbers with Negative Sub- scripts, Integers 14, 2014.
  • [6] Lin, Pin-Yen., De Moivre-Type Identities for the Tribonacci Numbers, The Fibonacci Quar- terly, 26(2), 131-134, 1988.
  • [7] McCarty, C.P., A Formula for Tribonacci Numbers, The Fibonacci Quarterly, 19, 391-393, 1981.
  • [8] Pethe, S., Some Identities for Tribonacci Sequences, The Fibonacci Quarterly, 26, 144-151, 1988.
  • [9] Ramirez, J. L., Sirvent, V.F., Incomplete Tribonacci Numbers and Polynomials, Journal of Integer Sequences,17, Article 14.4.2, 2014.
  • [10] Spickerman, W.R., Binet's Formula for the Tribonacci Sequence, The Fibonacci Quaeterly, 20(2), 118-120, 1982.
  • [11] Tan, M., Zhang, Y., A Note on Bivariate and Trivariate Fibonacci Polynomials, Southeast Asian Bulletin of Mathematics, 29, 975-990, 2005.
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

E. Gokcen Kocer

Hatice Gedıkce This is me

Submission Date July 10, 2014
Publication Date October 1, 2016
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Kocer, E. G., & Gedıkce, H. (2016). TRIVARIATE FIBONACCI AND LUCAS POLYNOMIALS. Konuralp Journal of Mathematics, 4(2), 247-254. https://izlik.org/JA37BE34WR
AMA 1.Kocer EG, Gedıkce H. TRIVARIATE FIBONACCI AND LUCAS POLYNOMIALS. Konuralp J. Math. 2016;4(2):247-254. https://izlik.org/JA37BE34WR
Chicago Kocer, E. Gokcen, and Hatice Gedıkce. 2016. “TRIVARIATE FIBONACCI AND LUCAS POLYNOMIALS”. Konuralp Journal of Mathematics 4 (2): 247-54. https://izlik.org/JA37BE34WR.
EndNote Kocer EG, Gedıkce H (October 1, 2016) TRIVARIATE FIBONACCI AND LUCAS POLYNOMIALS. Konuralp Journal of Mathematics 4 2 247–254.
IEEE [1]E. G. Kocer and H. Gedıkce, “TRIVARIATE FIBONACCI AND LUCAS POLYNOMIALS”, Konuralp J. Math., vol. 4, no. 2, pp. 247–254, Oct. 2016, [Online]. Available: https://izlik.org/JA37BE34WR
ISNAD Kocer, E. Gokcen - Gedıkce, Hatice. “TRIVARIATE FIBONACCI AND LUCAS POLYNOMIALS”. Konuralp Journal of Mathematics 4/2 (October 1, 2016): 247-254. https://izlik.org/JA37BE34WR.
JAMA 1.Kocer EG, Gedıkce H. TRIVARIATE FIBONACCI AND LUCAS POLYNOMIALS. Konuralp J. Math. 2016;4:247–254.
MLA Kocer, E. Gokcen, and Hatice Gedıkce. “TRIVARIATE FIBONACCI AND LUCAS POLYNOMIALS”. Konuralp Journal of Mathematics, vol. 4, no. 2, Oct. 2016, pp. 247-54, https://izlik.org/JA37BE34WR.
Vancouver 1.Kocer EG, Gedıkce H. TRIVARIATE FIBONACCI AND LUCAS POLYNOMIALS. Konuralp J. Math. [Internet]. 2016 Oct. 1;4(2):247-54. Available from: https://izlik.org/JA37BE34WR
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.