Research Article
BibTex RIS Cite

$\mathcal{I}$-LIMIT SUPERIOR AND $\mathcal{I}$-LIMIT INFERIOR FOR SEQUENCES OF FUZZY NUMBERS

Year 2016, Volume: 4 Issue: 2, 183 - 192, 01.10.2016

Abstract

The statistical limit inferior and limit superior for sequences of fuzzy numbers have been introduced by Aytar, Pehlivan and Mammadov [Statistical limit inferior and limit superior for sequences of fuzzy numbers, Fuzzy Sets and Systems, 157(7) (2006) 976--985]. In this paper, we extend concepts of statistical limit superior and inferior to $\mathcal{I}$-limit superior and $\mathcal{I}$-inferior for a sequence of fuzzy numbers. Also, we prove some basic properties.

References

  • [1] H. Altinok, R. Colak and Y. AltIn, On the class of-statistically convergent di erence sequences of fuzzy numbers, Soft Computing 16(6)(2012),1029{1034.
  • [2] Y. Altn , M. Mursaleen, H. Altnok, Statistical summability (C; 1)-for sequences of fuzzy real numbers and a Tauberian theorem, Journal of Intelligent and Fuzzy Systems 21(2010), 379{384.
  • [3] S. Aytar, S. Pehlivan, Statistical cluster and extreme limit points of sequences of fuzzy numbers, Information Sciences, 177(16) (2007) 3290{3296.
  • [4] S. Aytar, S. Pehlivan, M. Mammadov, The core of a sequence of fuzzy numbers, Fuzzy Sets and Systems, 159 (24) (2008) 3369{3379.
  • [5] S. Aytar, M. Mammadov, S. Pehlivan, Statistical limit inferior and limit superior for sequences of fuzzy numbers, Fuzzy Sets and Systems, 157(7) (2006) 976{985.
  • [6] S. Aytar, S. Pehlivan, On I-convergent sequences of real numbers. Ital. J. Pure Appl. Math. 21 (2007), 191{196.
  • [7] H. Altinok, M. Mursaleen, -Statistical Boundedness for Sequences of fuzzy numbers, Taiwanese Journal of Mathematics 15(5) (2011), 2081{2093
  • [8] F.Bas.ar, Summability Theory and its Applications, in: Monographs, Bentham Science Publishers, (2011), e-books.
  • [9] I. Canak, On the Riesz mean of sequences of fuzzy real numbers, Journal of Intelligent and Fuzzy Systems 26 (6) 2014, 2685{2688
  • [10] K. Demirci, I- limit superior and limit inferior, Mathematical Communications, 6 (2001), 165{172
  • [11] E. Dundar,  O. Talo, I2-convergence of double sequences of fuzzy numbers, Iranian Journal of Fuzzy Systems Vol. 10, No. 3, (2013) pp. 37-50
  • [12] J. A. R. Freedman, J. J. Sember, Densities and summability, Paci c Journal of Mathematics, 95 (1981), 293{305.
  • [13] B. Hazarika, Lacunary difference ideal convergent sequence spaces of fuzzy numbers, Journal of Intelligent & Fuzzy Systems 25 (2013), 157{166
  • [14] B. Hazarika, On -uniform density and ideal convergent sequences of fuzzy real numbers, Journal of Intelligent & Fuzzy Systems, 26 (2014), 793{799.
  • [15] D. H. Hong, E. L. Moon, J. D. Kim, A note on the core of fuzzy numbers, Applied Mathematics Letters, 23(5) (2010), 651{655. [16] P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Analysis Exchange, 26(2) (2000), 669{686.
  • [17] P. Kostyrko, M. Macaj, T. Salat, M. Sleziak,I-convergence and extremal I-limit points, Mathematica Slovaca, 55 (2005), 443{464.
  • [18] V. Kumar, K. Kumar, On the ideal convergence of sequences of fuzzy numbers, Information Sciences, 178(2008), 4670{4678.
  • [19] V. Kumar, A. Sharma, K. Kumar, N. Singh, On I-Limit Points and I-Cluster Points of Sequences of Fuzzy Numbers, International Mathematical Forum, 57(2) (2007), 2815{2822.
  • [20] H. Li, C.Wu, The integral of a fuzzy mapping over a directed line, Fuzzy Sets and Systems, 158 (2007), 2317{2338.
  • [21] M. Matloka, Sequences of fuzzy numbers, BUSEFAL, 28(1986), 28{37.
  • [22] S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33 (1989), 123{126.
  • [23] F. Nuray and E. Savas, Statistical convergence of fuzzy numbers, Mathematica Slovaca 45(3) (1995), 269{273.
  • [24] T. Salt, B.C. Tripathy, M. Ziman, On I-convergence eld, Italian Journal of Pure and Applied Mathematics 17 (2005), 45{54.
  • [25] E. Savas, Some double lacunary I-convergent sequence spaces of fuzzy numbers de ned by Orlicz function, Journal of Intelligent & Fuzzy Systems 23 (2012), 249{257.
  • [26] E. Savas,A note on double lacunary statistical I-convergence of fuzzy numbers, Soft Computing (2012), 16 591{595.
  • [27] E. Savas, On convergent double sequence spaces of fuzzy numbers de ned by ideal and Orlicz function, Journal of Intelligent & Fuzzy Systems 26 (2014), 1869{1877
  • [28] C. -x. Wu, C.Wu, The supremum and in mum of the set of fuzzy numbers and its application, Journal of Mathematical Analysis and Applications, 210 (1997), 499-511.
  • [29]  O. Talo, Talo, C. Cakan, The extension of the Knopp core theorem to the sequences of fuzzy numbers, Information Sciences 276 (2014), 10{20.
  • [30]  O. Talo, Some properties of limit inferior and limit superior for sequences of fuzzy real numbers, Information Sciences, 279(2014), 560{568
  • [31]  O. Talo, F. Basar, On the Slowly Decreasing Sequences of Fuzzy Numbers, Abstract and Applied Analysis Article ID 891986 doi:10.1155/2013/891986 (2013), 1-7.
  • [32] B.C. Tripathy, A.J. Dutta, Lacunary bounded variation sequence of fuzzy real numbers, Journal of Intelligent and Fuzzy Systems 24(1)(2013), 185{189.
  • [33] B.C. Tripathy, M. Sen, On fuzzy I-convergent di erence sequence space, Journal of Intelligent & Fuzzy Systems 25(3) (2013), 643{647.
Year 2016, Volume: 4 Issue: 2, 183 - 192, 01.10.2016

Abstract

References

  • [1] H. Altinok, R. Colak and Y. AltIn, On the class of-statistically convergent di erence sequences of fuzzy numbers, Soft Computing 16(6)(2012),1029{1034.
  • [2] Y. Altn , M. Mursaleen, H. Altnok, Statistical summability (C; 1)-for sequences of fuzzy real numbers and a Tauberian theorem, Journal of Intelligent and Fuzzy Systems 21(2010), 379{384.
  • [3] S. Aytar, S. Pehlivan, Statistical cluster and extreme limit points of sequences of fuzzy numbers, Information Sciences, 177(16) (2007) 3290{3296.
  • [4] S. Aytar, S. Pehlivan, M. Mammadov, The core of a sequence of fuzzy numbers, Fuzzy Sets and Systems, 159 (24) (2008) 3369{3379.
  • [5] S. Aytar, M. Mammadov, S. Pehlivan, Statistical limit inferior and limit superior for sequences of fuzzy numbers, Fuzzy Sets and Systems, 157(7) (2006) 976{985.
  • [6] S. Aytar, S. Pehlivan, On I-convergent sequences of real numbers. Ital. J. Pure Appl. Math. 21 (2007), 191{196.
  • [7] H. Altinok, M. Mursaleen, -Statistical Boundedness for Sequences of fuzzy numbers, Taiwanese Journal of Mathematics 15(5) (2011), 2081{2093
  • [8] F.Bas.ar, Summability Theory and its Applications, in: Monographs, Bentham Science Publishers, (2011), e-books.
  • [9] I. Canak, On the Riesz mean of sequences of fuzzy real numbers, Journal of Intelligent and Fuzzy Systems 26 (6) 2014, 2685{2688
  • [10] K. Demirci, I- limit superior and limit inferior, Mathematical Communications, 6 (2001), 165{172
  • [11] E. Dundar,  O. Talo, I2-convergence of double sequences of fuzzy numbers, Iranian Journal of Fuzzy Systems Vol. 10, No. 3, (2013) pp. 37-50
  • [12] J. A. R. Freedman, J. J. Sember, Densities and summability, Paci c Journal of Mathematics, 95 (1981), 293{305.
  • [13] B. Hazarika, Lacunary difference ideal convergent sequence spaces of fuzzy numbers, Journal of Intelligent & Fuzzy Systems 25 (2013), 157{166
  • [14] B. Hazarika, On -uniform density and ideal convergent sequences of fuzzy real numbers, Journal of Intelligent & Fuzzy Systems, 26 (2014), 793{799.
  • [15] D. H. Hong, E. L. Moon, J. D. Kim, A note on the core of fuzzy numbers, Applied Mathematics Letters, 23(5) (2010), 651{655. [16] P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Analysis Exchange, 26(2) (2000), 669{686.
  • [17] P. Kostyrko, M. Macaj, T. Salat, M. Sleziak,I-convergence and extremal I-limit points, Mathematica Slovaca, 55 (2005), 443{464.
  • [18] V. Kumar, K. Kumar, On the ideal convergence of sequences of fuzzy numbers, Information Sciences, 178(2008), 4670{4678.
  • [19] V. Kumar, A. Sharma, K. Kumar, N. Singh, On I-Limit Points and I-Cluster Points of Sequences of Fuzzy Numbers, International Mathematical Forum, 57(2) (2007), 2815{2822.
  • [20] H. Li, C.Wu, The integral of a fuzzy mapping over a directed line, Fuzzy Sets and Systems, 158 (2007), 2317{2338.
  • [21] M. Matloka, Sequences of fuzzy numbers, BUSEFAL, 28(1986), 28{37.
  • [22] S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33 (1989), 123{126.
  • [23] F. Nuray and E. Savas, Statistical convergence of fuzzy numbers, Mathematica Slovaca 45(3) (1995), 269{273.
  • [24] T. Salt, B.C. Tripathy, M. Ziman, On I-convergence eld, Italian Journal of Pure and Applied Mathematics 17 (2005), 45{54.
  • [25] E. Savas, Some double lacunary I-convergent sequence spaces of fuzzy numbers de ned by Orlicz function, Journal of Intelligent & Fuzzy Systems 23 (2012), 249{257.
  • [26] E. Savas,A note on double lacunary statistical I-convergence of fuzzy numbers, Soft Computing (2012), 16 591{595.
  • [27] E. Savas, On convergent double sequence spaces of fuzzy numbers de ned by ideal and Orlicz function, Journal of Intelligent & Fuzzy Systems 26 (2014), 1869{1877
  • [28] C. -x. Wu, C.Wu, The supremum and in mum of the set of fuzzy numbers and its application, Journal of Mathematical Analysis and Applications, 210 (1997), 499-511.
  • [29]  O. Talo, Talo, C. Cakan, The extension of the Knopp core theorem to the sequences of fuzzy numbers, Information Sciences 276 (2014), 10{20.
  • [30]  O. Talo, Some properties of limit inferior and limit superior for sequences of fuzzy real numbers, Information Sciences, 279(2014), 560{568
  • [31]  O. Talo, F. Basar, On the Slowly Decreasing Sequences of Fuzzy Numbers, Abstract and Applied Analysis Article ID 891986 doi:10.1155/2013/891986 (2013), 1-7.
  • [32] B.C. Tripathy, A.J. Dutta, Lacunary bounded variation sequence of fuzzy real numbers, Journal of Intelligent and Fuzzy Systems 24(1)(2013), 185{189.
  • [33] B.C. Tripathy, M. Sen, On fuzzy I-convergent di erence sequence space, Journal of Intelligent & Fuzzy Systems 25(3) (2013), 643{647.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ozer Talo This is me

Erdinc Dundar

Publication Date October 1, 2016
Submission Date June 3, 2014
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Talo, O., & Dundar, E. (2016). $\mathcal{I}$-LIMIT SUPERIOR AND $\mathcal{I}$-LIMIT INFERIOR FOR SEQUENCES OF FUZZY NUMBERS. Konuralp Journal of Mathematics, 4(2), 183-192.
AMA Talo O, Dundar E. $\mathcal{I}$-LIMIT SUPERIOR AND $\mathcal{I}$-LIMIT INFERIOR FOR SEQUENCES OF FUZZY NUMBERS. Konuralp J. Math. October 2016;4(2):183-192.
Chicago Talo, Ozer, and Erdinc Dundar. “$\mathcal{I}$-LIMIT SUPERIOR AND $\mathcal{I}$-LIMIT INFERIOR FOR SEQUENCES OF FUZZY NUMBERS”. Konuralp Journal of Mathematics 4, no. 2 (October 2016): 183-92.
EndNote Talo O, Dundar E (October 1, 2016) $\mathcal{I}$-LIMIT SUPERIOR AND $\mathcal{I}$-LIMIT INFERIOR FOR SEQUENCES OF FUZZY NUMBERS. Konuralp Journal of Mathematics 4 2 183–192.
IEEE O. Talo and E. Dundar, “$\mathcal{I}$-LIMIT SUPERIOR AND $\mathcal{I}$-LIMIT INFERIOR FOR SEQUENCES OF FUZZY NUMBERS”, Konuralp J. Math., vol. 4, no. 2, pp. 183–192, 2016.
ISNAD Talo, Ozer - Dundar, Erdinc. “$\mathcal{I}$-LIMIT SUPERIOR AND $\mathcal{I}$-LIMIT INFERIOR FOR SEQUENCES OF FUZZY NUMBERS”. Konuralp Journal of Mathematics 4/2 (October 2016), 183-192.
JAMA Talo O, Dundar E. $\mathcal{I}$-LIMIT SUPERIOR AND $\mathcal{I}$-LIMIT INFERIOR FOR SEQUENCES OF FUZZY NUMBERS. Konuralp J. Math. 2016;4:183–192.
MLA Talo, Ozer and Erdinc Dundar. “$\mathcal{I}$-LIMIT SUPERIOR AND $\mathcal{I}$-LIMIT INFERIOR FOR SEQUENCES OF FUZZY NUMBERS”. Konuralp Journal of Mathematics, vol. 4, no. 2, 2016, pp. 183-92.
Vancouver Talo O, Dundar E. $\mathcal{I}$-LIMIT SUPERIOR AND $\mathcal{I}$-LIMIT INFERIOR FOR SEQUENCES OF FUZZY NUMBERS. Konuralp J. Math. 2016;4(2):183-92.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.