Research Article
BibTex RIS Cite

AN ARITHMETIC-GEOMETRIC MEAN INEQUALITY RELATED TO NUMERICAL RADIUS OF MATRICES

Year 2017, Volume: 5 Issue: 1, 85 - 91, 01.04.2017

Abstract

For positive matrices $A, B \in \mathbb{M}_{n}$ and for all $X \in \mathbb{M}_{n}$, we show that $ \omega(AXA)\leq \frac{1}{2} \omega(A^{2}X+XA^{2}),$ and the inequality $ \omega(AXB) \leq \frac{1}{2}\omega(A^{2}X+XB^{2})$ does not hold in general, where $ \omega(.) $ is the numerical radius.

References

  • [1] T. Ando, Matrix Young inequalities, Oper. Theory Adv. Appl. Vol: 75 (1995), 33-38.
  • [2] T. Ando and K. Okubo, Induced norms of the Schur multiplication operator, Linear Algebra Appl. Vol:147 (1991), 181-199.
  • [3] R. Bhatia, Positive De nite Matrices , Princeton University Press, 2007.
  • [4] R. Bhatia and F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl. Vol:11 (1990), 272-277.
  • [5] M. Erfanian Omidvar, M. Sal Moslehian and A. Niknam, Some numerical radius inequalities for Hilbert space operators, involve. Vol:2 (2009), 469-476.
  • [6] K.E. Gustafson and D.K.M. Rao, Numerical Range, Springer-Verlag, New York, 1997.
  • [7] C.R.Johnson, I. Spitkovsky and S. Gottlieb, Inequalities involving the numerical radius, Linear and Multilinear Algebra. Vol:37 (1994), 13-24.
  • [8] A. Salemi and A. Sheikhhosseini, Matrix Young numerical radius inequalities, J. Math. Inequal. Vol:16, No.3 (2013), 783 -791.
  • [9] A. Salemi and A. Sheikhhosseini, On reversing of the modi ed Young inequality, Ann. Funct. Anal. Vol:5, No.1 (2014), 69-75.
  • [10] X. Zhan, Matrix Inequalities(Lecture notes in mathematics), Springer, New York, 2002.
Year 2017, Volume: 5 Issue: 1, 85 - 91, 01.04.2017

Abstract

References

  • [1] T. Ando, Matrix Young inequalities, Oper. Theory Adv. Appl. Vol: 75 (1995), 33-38.
  • [2] T. Ando and K. Okubo, Induced norms of the Schur multiplication operator, Linear Algebra Appl. Vol:147 (1991), 181-199.
  • [3] R. Bhatia, Positive De nite Matrices , Princeton University Press, 2007.
  • [4] R. Bhatia and F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl. Vol:11 (1990), 272-277.
  • [5] M. Erfanian Omidvar, M. Sal Moslehian and A. Niknam, Some numerical radius inequalities for Hilbert space operators, involve. Vol:2 (2009), 469-476.
  • [6] K.E. Gustafson and D.K.M. Rao, Numerical Range, Springer-Verlag, New York, 1997.
  • [7] C.R.Johnson, I. Spitkovsky and S. Gottlieb, Inequalities involving the numerical radius, Linear and Multilinear Algebra. Vol:37 (1994), 13-24.
  • [8] A. Salemi and A. Sheikhhosseini, Matrix Young numerical radius inequalities, J. Math. Inequal. Vol:16, No.3 (2013), 783 -791.
  • [9] A. Salemi and A. Sheikhhosseini, On reversing of the modi ed Young inequality, Ann. Funct. Anal. Vol:5, No.1 (2014), 69-75.
  • [10] X. Zhan, Matrix Inequalities(Lecture notes in mathematics), Springer, New York, 2002.
There are 10 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Alemeh Sheıkhhosseını This is me

Publication Date April 1, 2017
Submission Date February 16, 2017
Acceptance Date January 18, 2017
Published in Issue Year 2017 Volume: 5 Issue: 1

Cite

APA Sheıkhhosseını, A. (2017). AN ARITHMETIC-GEOMETRIC MEAN INEQUALITY RELATED TO NUMERICAL RADIUS OF MATRICES. Konuralp Journal of Mathematics, 5(1), 85-91.
AMA Sheıkhhosseını A. AN ARITHMETIC-GEOMETRIC MEAN INEQUALITY RELATED TO NUMERICAL RADIUS OF MATRICES. Konuralp J. Math. April 2017;5(1):85-91.
Chicago Sheıkhhosseını, Alemeh. “AN ARITHMETIC-GEOMETRIC MEAN INEQUALITY RELATED TO NUMERICAL RADIUS OF MATRICES”. Konuralp Journal of Mathematics 5, no. 1 (April 2017): 85-91.
EndNote Sheıkhhosseını A (April 1, 2017) AN ARITHMETIC-GEOMETRIC MEAN INEQUALITY RELATED TO NUMERICAL RADIUS OF MATRICES. Konuralp Journal of Mathematics 5 1 85–91.
IEEE A. Sheıkhhosseını, “AN ARITHMETIC-GEOMETRIC MEAN INEQUALITY RELATED TO NUMERICAL RADIUS OF MATRICES”, Konuralp J. Math., vol. 5, no. 1, pp. 85–91, 2017.
ISNAD Sheıkhhosseını, Alemeh. “AN ARITHMETIC-GEOMETRIC MEAN INEQUALITY RELATED TO NUMERICAL RADIUS OF MATRICES”. Konuralp Journal of Mathematics 5/1 (April 2017), 85-91.
JAMA Sheıkhhosseını A. AN ARITHMETIC-GEOMETRIC MEAN INEQUALITY RELATED TO NUMERICAL RADIUS OF MATRICES. Konuralp J. Math. 2017;5:85–91.
MLA Sheıkhhosseını, Alemeh. “AN ARITHMETIC-GEOMETRIC MEAN INEQUALITY RELATED TO NUMERICAL RADIUS OF MATRICES”. Konuralp Journal of Mathematics, vol. 5, no. 1, 2017, pp. 85-91.
Vancouver Sheıkhhosseını A. AN ARITHMETIC-GEOMETRIC MEAN INEQUALITY RELATED TO NUMERICAL RADIUS OF MATRICES. Konuralp J. Math. 2017;5(1):85-91.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.