Research Article
BibTex RIS Cite

A NEW GENERALIZED FRACTIONAL DERIVATIVE AND INTEGRAL

Year 2017, Volume: 5 Issue: 2, 248 - 259, 15.10.2017

Abstract

In this article, we introduce a new general definition of fractional derivative and fractional integral, which depends on an unknown kernel. By using these definitions, we obtain the basic properties of fractional integral and fractional derivative such as Product Rule, Quotient Rule, Chain Rule, Roll's Theorem and Mean Value Theorem. We give some examples.

References

  • [1] A. Akkurt, M.E. Yıldırım and H. Yıldırım , On Some Integral Inequalities for Conformable Fractional Integrals, Asian Journal of Mathematics and Computer Research, 15(3): 205-212, 2017.
  • [2] R. Almeida, M. Guzowska and T. Odzijewicz, A remark on local fractional calculus and ordinary derivatives, arXiv preprint arXiv:1612.00214.
  • [3] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, in: Math. Studies., North-Holland, New York, 2006.
  • [4] U. Katumgapola, A new fractional derivative with classical properties, preprint.
  • [5] U.N. Katugampola, New Approach to a generalized fractional integral, Appl. Math. Comput. 218(3), (2011), 860-865.
  • [6] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics 279 (2015) 57-66.
  • [7] R. Khalil, M. Al horani, A. Yousef, M. Sababheh, A new de nition of fractional derivative, Journal of Computational Apllied Mathematics, 264 (2014), 65-70.
  • [8] O.S. Iyiola and E.R. Nwaeze, Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progr. Fract. Differ. Appl., 2(2), 115-122, 2016.
  • [9] M. Abu Hammad, R. Khalil, Conformable fractional heat differential equations, International Journal of Differential Equations and Applications 13(3), 2014, 177-183.
  • [10] M. Abu Hammad, R. Khalil, Abel's formula and wronskian for conformable fractional differential equations, International Journal of Differential Equations and Applications 13(3), 2014, 177-183.
  • [11] Samko, S.G.; Kilbas, A.A.; Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993.
  • [12] J. Vanterler da C. Sousa, E. Capelas de Oliveira, A new truncated M-fractional derivative unifying some fractional derivatives with classical properties, arXiv:1704.08187.
  • [13] J. Vanterler da C. Sousa, E. Capelas de Oliveira , M -fractional derivative with classical properties, arXiv:1704.08186.
  • [14] M. Z. Sarikaya, H. Budak and F.Usta, On generalized the conformable fractional calculus, RGMIA Research Report Collection, 19 (2016), Article 121, 7 pp.
Year 2017, Volume: 5 Issue: 2, 248 - 259, 15.10.2017

Abstract

References

  • [1] A. Akkurt, M.E. Yıldırım and H. Yıldırım , On Some Integral Inequalities for Conformable Fractional Integrals, Asian Journal of Mathematics and Computer Research, 15(3): 205-212, 2017.
  • [2] R. Almeida, M. Guzowska and T. Odzijewicz, A remark on local fractional calculus and ordinary derivatives, arXiv preprint arXiv:1612.00214.
  • [3] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, in: Math. Studies., North-Holland, New York, 2006.
  • [4] U. Katumgapola, A new fractional derivative with classical properties, preprint.
  • [5] U.N. Katugampola, New Approach to a generalized fractional integral, Appl. Math. Comput. 218(3), (2011), 860-865.
  • [6] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics 279 (2015) 57-66.
  • [7] R. Khalil, M. Al horani, A. Yousef, M. Sababheh, A new de nition of fractional derivative, Journal of Computational Apllied Mathematics, 264 (2014), 65-70.
  • [8] O.S. Iyiola and E.R. Nwaeze, Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progr. Fract. Differ. Appl., 2(2), 115-122, 2016.
  • [9] M. Abu Hammad, R. Khalil, Conformable fractional heat differential equations, International Journal of Differential Equations and Applications 13(3), 2014, 177-183.
  • [10] M. Abu Hammad, R. Khalil, Abel's formula and wronskian for conformable fractional differential equations, International Journal of Differential Equations and Applications 13(3), 2014, 177-183.
  • [11] Samko, S.G.; Kilbas, A.A.; Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993.
  • [12] J. Vanterler da C. Sousa, E. Capelas de Oliveira, A new truncated M-fractional derivative unifying some fractional derivatives with classical properties, arXiv:1704.08187.
  • [13] J. Vanterler da C. Sousa, E. Capelas de Oliveira , M -fractional derivative with classical properties, arXiv:1704.08186.
  • [14] M. Z. Sarikaya, H. Budak and F.Usta, On generalized the conformable fractional calculus, RGMIA Research Report Collection, 19 (2016), Article 121, 7 pp.
There are 14 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Abdullah Akkurt 0000-0001-5644-1276

Merve Esra Yıldırım This is me

Hüseyin Yıldırım

Publication Date October 15, 2017
Submission Date May 22, 2017
Acceptance Date September 18, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Akkurt, A., Yıldırım, M. E., & Yıldırım, H. (2017). A NEW GENERALIZED FRACTIONAL DERIVATIVE AND INTEGRAL. Konuralp Journal of Mathematics, 5(2), 248-259.
AMA Akkurt A, Yıldırım ME, Yıldırım H. A NEW GENERALIZED FRACTIONAL DERIVATIVE AND INTEGRAL. Konuralp J. Math. October 2017;5(2):248-259.
Chicago Akkurt, Abdullah, Merve Esra Yıldırım, and Hüseyin Yıldırım. “A NEW GENERALIZED FRACTIONAL DERIVATIVE AND INTEGRAL”. Konuralp Journal of Mathematics 5, no. 2 (October 2017): 248-59.
EndNote Akkurt A, Yıldırım ME, Yıldırım H (October 1, 2017) A NEW GENERALIZED FRACTIONAL DERIVATIVE AND INTEGRAL. Konuralp Journal of Mathematics 5 2 248–259.
IEEE A. Akkurt, M. E. Yıldırım, and H. Yıldırım, “A NEW GENERALIZED FRACTIONAL DERIVATIVE AND INTEGRAL”, Konuralp J. Math., vol. 5, no. 2, pp. 248–259, 2017.
ISNAD Akkurt, Abdullah et al. “A NEW GENERALIZED FRACTIONAL DERIVATIVE AND INTEGRAL”. Konuralp Journal of Mathematics 5/2 (October 2017), 248-259.
JAMA Akkurt A, Yıldırım ME, Yıldırım H. A NEW GENERALIZED FRACTIONAL DERIVATIVE AND INTEGRAL. Konuralp J. Math. 2017;5:248–259.
MLA Akkurt, Abdullah et al. “A NEW GENERALIZED FRACTIONAL DERIVATIVE AND INTEGRAL”. Konuralp Journal of Mathematics, vol. 5, no. 2, 2017, pp. 248-59.
Vancouver Akkurt A, Yıldırım ME, Yıldırım H. A NEW GENERALIZED FRACTIONAL DERIVATIVE AND INTEGRAL. Konuralp J. Math. 2017;5(2):248-59.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.