Year 2017,
Volume: 5 Issue: 2, 146 - 159, 15.10.2017
Necmettin Alp
,
Mehmet Zeki Sarıkaya
References
- [1] N. Alp, M. Z. Sarikaya, M. Kunt and ·I. ·I¸scan, q-Hermite Hadamard inequalities and quantum
estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of
King Saud University - Science, 2016, dx.doi.org/10.1016/j.jksus.2016.09.007.
- [2] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, JIPAM. J. Inequal.
Pure Appl. Math. 2009., 10: Article ID 86.
- [3] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci. 2010, 9: 493497.
- [4] T. Ernst, A method for q-calculus. J. Nonlinear Math. Phys. 10 (4), 487525 (2003).
- [5] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl. 2004, 47: 281300.
10.1016/S0898-1221(04)90025-9.
- [6] J. Hadamard, Etude sur les propri´ et´ es des fonctions enti´ eres et en particulier dune fonc-
tion consider´ ee par Riemann, J. Math. Pures Appl. 58 (1893) 171215.
- [7] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002.
- [8] M. A. Noor, K. I. Noor and M. U. Awan, Some Quantum estimates for HermiteHadamard
inequalities, Appl. Math. Comput. 251, 675679 (2015).
- [9] M. A. Noor, K. I. Noor and M. U. Awan, Quantum Ostrowski inequalities for q-di¤ erentiable
convex functions, J. Math. Inequlities, (2016).
- [10] H. Ogunmez and U.M. Ozkan, Fractional quantum integral inequalities, J. Inequal. Appl.
2011., 2011: Article ID 787939
- [11] W. Sudsutad and S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex
functions, Jour. Math Ineq. Volume 9, Number 3 (2015), 781793.
- [12] J. Tariboon, S. K. Ntouyas, Quantum calculus on
nite intervals and applications to impul-
sive di¤ erence equations, Adv. Di¤er. Equ. 2013, 2013:282.
- [13] J. Tariboon and S. K. Ntouyas, Quantum integral inequalities on
nite intervals, J. Inequal.
Appl. 2014, 2014:121.
A NEW DEFINITION AND PROPERTIES OF QUANTUM INTEGRAL WHICH CALLS $\overline{q}$-INTEGRAL
Year 2017,
Volume: 5 Issue: 2, 146 - 159, 15.10.2017
Necmettin Alp
,
Mehmet Zeki Sarıkaya
Abstract
In this paper, we present a new definition of $q$-integral by using trapezoid pieces and we name second sense $q$-integral which is showed $ \overline{q}$-integral and we give some results and properties of $\overline{ q}$-integral. Finaly, we establish some new $\overline{q}$-Hermite-Hadamard type inequalities for convex functions.
References
- [1] N. Alp, M. Z. Sarikaya, M. Kunt and ·I. ·I¸scan, q-Hermite Hadamard inequalities and quantum
estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of
King Saud University - Science, 2016, dx.doi.org/10.1016/j.jksus.2016.09.007.
- [2] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, JIPAM. J. Inequal.
Pure Appl. Math. 2009., 10: Article ID 86.
- [3] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci. 2010, 9: 493497.
- [4] T. Ernst, A method for q-calculus. J. Nonlinear Math. Phys. 10 (4), 487525 (2003).
- [5] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl. 2004, 47: 281300.
10.1016/S0898-1221(04)90025-9.
- [6] J. Hadamard, Etude sur les propri´ et´ es des fonctions enti´ eres et en particulier dune fonc-
tion consider´ ee par Riemann, J. Math. Pures Appl. 58 (1893) 171215.
- [7] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002.
- [8] M. A. Noor, K. I. Noor and M. U. Awan, Some Quantum estimates for HermiteHadamard
inequalities, Appl. Math. Comput. 251, 675679 (2015).
- [9] M. A. Noor, K. I. Noor and M. U. Awan, Quantum Ostrowski inequalities for q-di¤ erentiable
convex functions, J. Math. Inequlities, (2016).
- [10] H. Ogunmez and U.M. Ozkan, Fractional quantum integral inequalities, J. Inequal. Appl.
2011., 2011: Article ID 787939
- [11] W. Sudsutad and S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex
functions, Jour. Math Ineq. Volume 9, Number 3 (2015), 781793.
- [12] J. Tariboon, S. K. Ntouyas, Quantum calculus on
nite intervals and applications to impul-
sive di¤ erence equations, Adv. Di¤er. Equ. 2013, 2013:282.
- [13] J. Tariboon and S. K. Ntouyas, Quantum integral inequalities on
nite intervals, J. Inequal.
Appl. 2014, 2014:121.