Research Article
BibTex RIS Cite

AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING $ \Delta r_{i}=\lambda _{i}r_{i}$

Year 2017, Volume: 5 Issue: 2, 47 - 53, 15.10.2017

Abstract

In this paper we study the affine translation surfaces in 3-dimensional Euclidean space $\mathbb{E}^{3}$ under the condition $\Delta r_{i}=\lambda _{i}r_{i}$, where $\lambda _{i}\in \mathbb{R}$ and $\Delta $ denotes the Laplace operator. We obtain the complete classification for those ones.

References

  • [1] M. Bekkar and B. Senoussi, Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying $\Delta r_{i}=\lambda _{i}r_{i},$ J. Geom. 103 (2012), 17 - 29.
  • [2] M. Bekkar and B. Senoussi, Translation surfaces in the 3-dimensional space satisfying $\Delta ^{III}r_{i}=\mu _{i}r_{i},$ J. Geom. 103 (2012), 367-374.
  • [3] Chr. Beneki, G. Kaimakamis and B.J. Papantoniou, Helicoidal surfaces in the three dimensional Minkowski space, J. Math. Appl. 275 (2002), 586-614.
  • [4] B.-Y. Chen, Total mean curvature and submanifolds of nite type, World Scienti c, Singapore. (1984).
  • [5] M. Choi and Y.H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), 753-761.
  • [6] M. Choi, Y.H. Kim, H. Liu and D.W. Yoon, Helicoidal surfaces and their Gauss map in Minkowski 3-Space, Bull. Korean Math. Soc. 47 (2010), 859-881.
  • [7] F. Dillen, J. Pas and L. Verstraelen, On surfaces of nite type in Euclidean 3-space, Kodai Math. J. 13 (1990), 10-21.
  • [8] A. Ferrandez, O.J. Garay and P. Lucas, On a certain class of conformally at Euclidean hypersurfaces, Proc. of the Conf, in Global Analysis and Global Differential Geometry, Berlin. (1990).
  • [9] G. Kaimakamis, B.J. Papantoniou and K. Petoumenos, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space $\mathbb{E}_{1}^{3}$ satisfying $\Delta ^{III}\overrightarrow{r}=A\overrightarrow{r}$, Bull. Greek. Math. Soc. 50 (2005), 76-90.
  • [10] H. Liu, Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), 141-149.
  • [11] H. Liu and Y. Yu, Ane translation surfaces in Euclidean 3 -space, Proc. Japan Acad. 89 (2013), 111-113.
  • [12] R. Lopez, Minimal translation surfaces in hyperbolic space, Beitr. Algebra Geom. 52 (2011), 105-112.
  • [13] R. Lopez and M. I. Munteanu, Minimal translation surfaces in Sol3, J. Math. Soc. Japan, 64 (2012), 985-1003.
  • [14] M. I. Munteanu and A. I. Nistor, Polynomial translationWeingarten surfaces in 3-dimensional Euclidean space, Proceedings of the VIII International Colloquium on Di erential Geometry, World Scienti c. (2009), 316-320.
  • [15] B. Senoussi and M. Bekkar, Helicoidal surfaces in the 3-dimensional Lorentz - Minkowski space $\mathbb{E}_{1}^{3}$ satisfying $\Delta ^{III}r=Ar$, Tsukuba J. Math. 37 (2013), 339 - 353.
  • [16] K. Seo, Translation hypersurfaces with constant curvature in space forms, Osaka J. Math. 50 (2013), 631-641.
  • [17] S. Stamatakis and H. Al-Zoubi, Surfaces of revolution satisfying $\Delta ^{III}x=Ax$, J. Geom. Graph. 14 (2010), 181-186.
  • [18] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, Waltham. (1983).
  • [19] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan. 18 (1966), 380-385.
  • [20] L. Verstraelen, J. Walrave, S. Yaprak, The minimal translation surfaces in Euclidean space, Soochow J. Math. 20 (1994), 77-82.
Year 2017, Volume: 5 Issue: 2, 47 - 53, 15.10.2017

Abstract

References

  • [1] M. Bekkar and B. Senoussi, Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying $\Delta r_{i}=\lambda _{i}r_{i},$ J. Geom. 103 (2012), 17 - 29.
  • [2] M. Bekkar and B. Senoussi, Translation surfaces in the 3-dimensional space satisfying $\Delta ^{III}r_{i}=\mu _{i}r_{i},$ J. Geom. 103 (2012), 367-374.
  • [3] Chr. Beneki, G. Kaimakamis and B.J. Papantoniou, Helicoidal surfaces in the three dimensional Minkowski space, J. Math. Appl. 275 (2002), 586-614.
  • [4] B.-Y. Chen, Total mean curvature and submanifolds of nite type, World Scienti c, Singapore. (1984).
  • [5] M. Choi and Y.H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), 753-761.
  • [6] M. Choi, Y.H. Kim, H. Liu and D.W. Yoon, Helicoidal surfaces and their Gauss map in Minkowski 3-Space, Bull. Korean Math. Soc. 47 (2010), 859-881.
  • [7] F. Dillen, J. Pas and L. Verstraelen, On surfaces of nite type in Euclidean 3-space, Kodai Math. J. 13 (1990), 10-21.
  • [8] A. Ferrandez, O.J. Garay and P. Lucas, On a certain class of conformally at Euclidean hypersurfaces, Proc. of the Conf, in Global Analysis and Global Differential Geometry, Berlin. (1990).
  • [9] G. Kaimakamis, B.J. Papantoniou and K. Petoumenos, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space $\mathbb{E}_{1}^{3}$ satisfying $\Delta ^{III}\overrightarrow{r}=A\overrightarrow{r}$, Bull. Greek. Math. Soc. 50 (2005), 76-90.
  • [10] H. Liu, Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), 141-149.
  • [11] H. Liu and Y. Yu, Ane translation surfaces in Euclidean 3 -space, Proc. Japan Acad. 89 (2013), 111-113.
  • [12] R. Lopez, Minimal translation surfaces in hyperbolic space, Beitr. Algebra Geom. 52 (2011), 105-112.
  • [13] R. Lopez and M. I. Munteanu, Minimal translation surfaces in Sol3, J. Math. Soc. Japan, 64 (2012), 985-1003.
  • [14] M. I. Munteanu and A. I. Nistor, Polynomial translationWeingarten surfaces in 3-dimensional Euclidean space, Proceedings of the VIII International Colloquium on Di erential Geometry, World Scienti c. (2009), 316-320.
  • [15] B. Senoussi and M. Bekkar, Helicoidal surfaces in the 3-dimensional Lorentz - Minkowski space $\mathbb{E}_{1}^{3}$ satisfying $\Delta ^{III}r=Ar$, Tsukuba J. Math. 37 (2013), 339 - 353.
  • [16] K. Seo, Translation hypersurfaces with constant curvature in space forms, Osaka J. Math. 50 (2013), 631-641.
  • [17] S. Stamatakis and H. Al-Zoubi, Surfaces of revolution satisfying $\Delta ^{III}x=Ax$, J. Geom. Graph. 14 (2010), 181-186.
  • [18] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, Waltham. (1983).
  • [19] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan. 18 (1966), 380-385.
  • [20] L. Verstraelen, J. Walrave, S. Yaprak, The minimal translation surfaces in Euclidean space, Soochow J. Math. 20 (1994), 77-82.
There are 20 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Bendehiba Senoussı This is me

Mohammed Bekkar This is me

Publication Date October 15, 2017
Submission Date October 13, 2017
Acceptance Date May 31, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Senoussı, B., & Bekkar, M. (2017). AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING $ \Delta r_{i}=\lambda _{i}r_{i}$. Konuralp Journal of Mathematics, 5(2), 47-53.
AMA Senoussı B, Bekkar M. AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING $ \Delta r_{i}=\lambda _{i}r_{i}$. Konuralp J. Math. October 2017;5(2):47-53.
Chicago Senoussı, Bendehiba, and Mohammed Bekkar. “AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING $ \Delta r_{i}=\lambda _{i}r_{i}$”. Konuralp Journal of Mathematics 5, no. 2 (October 2017): 47-53.
EndNote Senoussı B, Bekkar M (October 1, 2017) AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING $ \Delta r_{i}=\lambda _{i}r_{i}$. Konuralp Journal of Mathematics 5 2 47–53.
IEEE B. Senoussı and M. Bekkar, “AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING $ \Delta r_{i}=\lambda _{i}r_{i}$”, Konuralp J. Math., vol. 5, no. 2, pp. 47–53, 2017.
ISNAD Senoussı, Bendehiba - Bekkar, Mohammed. “AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING $ \Delta r_{i}=\lambda _{i}r_{i}$”. Konuralp Journal of Mathematics 5/2 (October 2017), 47-53.
JAMA Senoussı B, Bekkar M. AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING $ \Delta r_{i}=\lambda _{i}r_{i}$. Konuralp J. Math. 2017;5:47–53.
MLA Senoussı, Bendehiba and Mohammed Bekkar. “AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING $ \Delta r_{i}=\lambda _{i}r_{i}$”. Konuralp Journal of Mathematics, vol. 5, no. 2, 2017, pp. 47-53.
Vancouver Senoussı B, Bekkar M. AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE SATISFYING $ \Delta r_{i}=\lambda _{i}r_{i}$. Konuralp J. Math. 2017;5(2):47-53.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.