Research Article
BibTex RIS Cite

Higher Order Accurate Numerical Solution of Advection Diffusion Equation

Year 2018, Volume: 6 Issue: 2, 253 - 258, 15.10.2018

Abstract

In this study, the advection diffusion equation (ADE) will be solved numerically using the quintic B-spline Galerkin finite-element method, based on second and fourth order single step methods for time integration. Two test problems are studied and accuracy of the numerical results are measured by the computing the order of convergence and error norm $L_{\infty }$ for the proposed methods. The numerical results of this study demonstrate that the proposed two algorithms especially the fourth order single step method are a remarkably successful numerical technique for solving the advection diffusion equation.

References

  • [1] M. Dehghan, Weighted finite difference techniques for the one-dimensional advection-diffusion equation, Appl. Math. Comput., 147 (2004), 307-319.
  • [2] M. Sari , G. G¨uraslan and A. Zeytinoglu, High-Order finite difference schemes for solving the advection-diffusion equation, Math. Comput. Appl., 15 (2010), 449-460.
  • [3] I. Da˘g, D. Irk and M. Tombul, Least-squares finite element method for the advection diffusion equation, Appl. Math. Comput., 173 (2006), 554-565.
  • [4] I. Da˘g, A. Canıvar and A. S¸ ahin, Taylor-Galerkin method for advection-diffusion equation, Kybernetes, 40 (2011), 762-777.
  • [5] D. Irk, ˙I. Da˘g and M. Tombul, Extended Cubic B-Spline Solution of the Advection-Diffusion Equation, KSCE J. Civ. Eng., 19(2015), 929-934.
  • [6] A. Korkmaz and ˙I. Da˘g, Quartic and quintic B-spline methods for advection diffusion equation, Appl. Math. Comput., 274 (2016), 208-219.
  • [7] R.C. Mittal and G. Arora, Quintic B-spline collocation method for numerical solution of the Kuramoto-Sivashinsky equation, Commun. Nonlinear. Sci., 15 (2010), 2798-2808.
  • [8] S.S. Siddiqi and S. Arshed, Quintic B-spline for the numerical solution of the good Boussinesq equation, Journal of the Egyptian Mathematical Society, 22 (2014), 209-213.
  • [9] B. Saka, A quintic B-spline finite-element method for solving the nonlinear Schr¨odinger equation, Phys. Wawe Phenom. 20 (2012), 107-117.
  • [10] A. Bas¸han, S.B.G. Karakoc¸ and T. Geyikli, Approximation of the KdVB equation by the quintic B-spline differential quadrature method, Kuwait J. Sci., 42 (2015), 67-92.
  • [11] P.M. Prenter, Splines and variational methods, J. Wiley, 1975.
Year 2018, Volume: 6 Issue: 2, 253 - 258, 15.10.2018

Abstract

References

  • [1] M. Dehghan, Weighted finite difference techniques for the one-dimensional advection-diffusion equation, Appl. Math. Comput., 147 (2004), 307-319.
  • [2] M. Sari , G. G¨uraslan and A. Zeytinoglu, High-Order finite difference schemes for solving the advection-diffusion equation, Math. Comput. Appl., 15 (2010), 449-460.
  • [3] I. Da˘g, D. Irk and M. Tombul, Least-squares finite element method for the advection diffusion equation, Appl. Math. Comput., 173 (2006), 554-565.
  • [4] I. Da˘g, A. Canıvar and A. S¸ ahin, Taylor-Galerkin method for advection-diffusion equation, Kybernetes, 40 (2011), 762-777.
  • [5] D. Irk, ˙I. Da˘g and M. Tombul, Extended Cubic B-Spline Solution of the Advection-Diffusion Equation, KSCE J. Civ. Eng., 19(2015), 929-934.
  • [6] A. Korkmaz and ˙I. Da˘g, Quartic and quintic B-spline methods for advection diffusion equation, Appl. Math. Comput., 274 (2016), 208-219.
  • [7] R.C. Mittal and G. Arora, Quintic B-spline collocation method for numerical solution of the Kuramoto-Sivashinsky equation, Commun. Nonlinear. Sci., 15 (2010), 2798-2808.
  • [8] S.S. Siddiqi and S. Arshed, Quintic B-spline for the numerical solution of the good Boussinesq equation, Journal of the Egyptian Mathematical Society, 22 (2014), 209-213.
  • [9] B. Saka, A quintic B-spline finite-element method for solving the nonlinear Schr¨odinger equation, Phys. Wawe Phenom. 20 (2012), 107-117.
  • [10] A. Bas¸han, S.B.G. Karakoc¸ and T. Geyikli, Approximation of the KdVB equation by the quintic B-spline differential quadrature method, Kuwait J. Sci., 42 (2015), 67-92.
  • [11] P.M. Prenter, Splines and variational methods, J. Wiley, 1975.
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Dursun Irk

Melis Zorşahin Görgülü

Publication Date October 15, 2018
Submission Date March 5, 2018
Acceptance Date October 5, 2018
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

APA Irk, D., & Zorşahin Görgülü, M. (2018). Higher Order Accurate Numerical Solution of Advection Diffusion Equation. Konuralp Journal of Mathematics, 6(2), 253-258.
AMA Irk D, Zorşahin Görgülü M. Higher Order Accurate Numerical Solution of Advection Diffusion Equation. Konuralp J. Math. October 2018;6(2):253-258.
Chicago Irk, Dursun, and Melis Zorşahin Görgülü. “Higher Order Accurate Numerical Solution of Advection Diffusion Equation”. Konuralp Journal of Mathematics 6, no. 2 (October 2018): 253-58.
EndNote Irk D, Zorşahin Görgülü M (October 1, 2018) Higher Order Accurate Numerical Solution of Advection Diffusion Equation. Konuralp Journal of Mathematics 6 2 253–258.
IEEE D. Irk and M. Zorşahin Görgülü, “Higher Order Accurate Numerical Solution of Advection Diffusion Equation”, Konuralp J. Math., vol. 6, no. 2, pp. 253–258, 2018.
ISNAD Irk, Dursun - Zorşahin Görgülü, Melis. “Higher Order Accurate Numerical Solution of Advection Diffusion Equation”. Konuralp Journal of Mathematics 6/2 (October 2018), 253-258.
JAMA Irk D, Zorşahin Görgülü M. Higher Order Accurate Numerical Solution of Advection Diffusion Equation. Konuralp J. Math. 2018;6:253–258.
MLA Irk, Dursun and Melis Zorşahin Görgülü. “Higher Order Accurate Numerical Solution of Advection Diffusion Equation”. Konuralp Journal of Mathematics, vol. 6, no. 2, 2018, pp. 253-8.
Vancouver Irk D, Zorşahin Görgülü M. Higher Order Accurate Numerical Solution of Advection Diffusion Equation. Konuralp J. Math. 2018;6(2):253-8.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.