Araştırma Makalesi
BibTex RIS Kaynak Göster

An Efficient Step Size Strategy for Numerical Approximation of Dynamical Systems with Hurwitz Stable

Yıl 2018, Cilt: 6 Sayı: 2, 290 - 298, 15.10.2018

Öz

In this study, we have given an algorithm and a step size strategy for numerical solution of Hurwitz stable differential equation systems. The algorithm is suited for implementation using computer algebra systems. So we also have given numerical examples from various field using this algorithm and a Maple procedure for the algorithm.



Kaynakça

  • [1] Bulgakov, H. Matrix Computations with Guaranteed Accuracy in Stabilty Theory, Selc¸uk University, Konya, 1995.
  • [2] Bulgak, H. Pseudoeigenvalues, Spectral Portrait of the Matrices and Their Connections with Different Criteria of Stability, NATO ASI Series, Series C: Mathematical and Physical Sciences,536, 1999, 95 p.
  • [3] Çelik Kızılkan, G. On the finding of step size in the numerical integtation of initial value peroblem, Master Thesis, Selc¸uk University Graduate Natural and Applied Sciences, Konya (in Turkish), 2004.
  • [4] Çelik Kızılkan, G. Step size strategies on the numerical integration of the systems of differential equations, Ph.D. Thesis, Selc¸uk University Graduate Natural and Applied Sciences, Konya (in Turkish), 2009.
  • [5] Çelik Kızılkan, G., Aydın, K. Step size strategy based on error analysis, SUFEFD, 25, 2005, pp. 79-86.
  • [6] Çelik Kızılkan, G., Aydın, K. A new variable step size algorithm for Cauchy problem, Appl Math Comput, 183, 2006, pp. 878-884.
  • [7] Çelik Kızılkan, G., Aydın, K. Step size strategies based on error analiysis for the linear systems, SDU Journal of Science (e- journal), 6(2), 2011, pp. 149-159.
  • [8] Çelik Kızılkan, G., Aydın, K. Step size strategies for the numerical integration of systems of differential equations, J Comput Appl Math, 236(15), 2012, pp. 3805-3816.
  • [9] Çıbıkdiken, A. O., Aydın, K. Computation of the monodromy matrix in floating point arithmetic with Wilkinson model, Comput Math Appl, 67(5), 2014, pp. 1186-1194.
  • [10] Duman,A., Aydın, K. Sensitivity of Hurwitz stability of linear differential equation systems with constant coefficients, Int J Geom Methods Mod Phys, 14(6),2017, pp. 1750084.
  • [11] El-Zahar, Essam R. An adaptative Step-Size Taylor Series Based Method and Application to Nonlinear Biochemical Reaction Model, Trends Appl Sci Res,7(11), 2012, pp.901-912.
  • [12] Golub, G.H., Ortega, J.M. Scientific Computing and Differential Equations, Academic Press Limited, London, 1992.
  • [13] Heath, M.T. Scientific Computing an Introductory Survey, 2nd Edition, McGraw-Hill, New York, 2002.
  • [14] Loan, C.F.V. Introduction to Scientific Computing, Prentice Hill, United States of America, 2000.
  • [15] Pastravanu, O., Voicu, M. Generalized matrix diagonal stability and linear dynamical systems, Linear Algebra Appl, 419, 2006, pp. 299-310.
  • [16] Gustafson, G. Sytems of differential equations. Grant Gustafson’s home Page (Access date 10.10.2017).
Yıl 2018, Cilt: 6 Sayı: 2, 290 - 298, 15.10.2018

Öz

Kaynakça

  • [1] Bulgakov, H. Matrix Computations with Guaranteed Accuracy in Stabilty Theory, Selc¸uk University, Konya, 1995.
  • [2] Bulgak, H. Pseudoeigenvalues, Spectral Portrait of the Matrices and Their Connections with Different Criteria of Stability, NATO ASI Series, Series C: Mathematical and Physical Sciences,536, 1999, 95 p.
  • [3] Çelik Kızılkan, G. On the finding of step size in the numerical integtation of initial value peroblem, Master Thesis, Selc¸uk University Graduate Natural and Applied Sciences, Konya (in Turkish), 2004.
  • [4] Çelik Kızılkan, G. Step size strategies on the numerical integration of the systems of differential equations, Ph.D. Thesis, Selc¸uk University Graduate Natural and Applied Sciences, Konya (in Turkish), 2009.
  • [5] Çelik Kızılkan, G., Aydın, K. Step size strategy based on error analysis, SUFEFD, 25, 2005, pp. 79-86.
  • [6] Çelik Kızılkan, G., Aydın, K. A new variable step size algorithm for Cauchy problem, Appl Math Comput, 183, 2006, pp. 878-884.
  • [7] Çelik Kızılkan, G., Aydın, K. Step size strategies based on error analiysis for the linear systems, SDU Journal of Science (e- journal), 6(2), 2011, pp. 149-159.
  • [8] Çelik Kızılkan, G., Aydın, K. Step size strategies for the numerical integration of systems of differential equations, J Comput Appl Math, 236(15), 2012, pp. 3805-3816.
  • [9] Çıbıkdiken, A. O., Aydın, K. Computation of the monodromy matrix in floating point arithmetic with Wilkinson model, Comput Math Appl, 67(5), 2014, pp. 1186-1194.
  • [10] Duman,A., Aydın, K. Sensitivity of Hurwitz stability of linear differential equation systems with constant coefficients, Int J Geom Methods Mod Phys, 14(6),2017, pp. 1750084.
  • [11] El-Zahar, Essam R. An adaptative Step-Size Taylor Series Based Method and Application to Nonlinear Biochemical Reaction Model, Trends Appl Sci Res,7(11), 2012, pp.901-912.
  • [12] Golub, G.H., Ortega, J.M. Scientific Computing and Differential Equations, Academic Press Limited, London, 1992.
  • [13] Heath, M.T. Scientific Computing an Introductory Survey, 2nd Edition, McGraw-Hill, New York, 2002.
  • [14] Loan, C.F.V. Introduction to Scientific Computing, Prentice Hill, United States of America, 2000.
  • [15] Pastravanu, O., Voicu, M. Generalized matrix diagonal stability and linear dynamical systems, Linear Algebra Appl, 419, 2006, pp. 299-310.
  • [16] Gustafson, G. Sytems of differential equations. Grant Gustafson’s home Page (Access date 10.10.2017).
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Gülnur Çelik Kızılkan

Kemal Aydın

Yayımlanma Tarihi 15 Ekim 2018
Gönderilme Tarihi 26 Nisan 2018
Kabul Tarihi 17 Mayıs 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 2

Kaynak Göster

APA Çelik Kızılkan, G., & Aydın, K. (2018). An Efficient Step Size Strategy for Numerical Approximation of Dynamical Systems with Hurwitz Stable. Konuralp Journal of Mathematics, 6(2), 290-298.
AMA Çelik Kızılkan G, Aydın K. An Efficient Step Size Strategy for Numerical Approximation of Dynamical Systems with Hurwitz Stable. Konuralp J. Math. Ekim 2018;6(2):290-298.
Chicago Çelik Kızılkan, Gülnur, ve Kemal Aydın. “An Efficient Step Size Strategy for Numerical Approximation of Dynamical Systems With Hurwitz Stable”. Konuralp Journal of Mathematics 6, sy. 2 (Ekim 2018): 290-98.
EndNote Çelik Kızılkan G, Aydın K (01 Ekim 2018) An Efficient Step Size Strategy for Numerical Approximation of Dynamical Systems with Hurwitz Stable. Konuralp Journal of Mathematics 6 2 290–298.
IEEE G. Çelik Kızılkan ve K. Aydın, “An Efficient Step Size Strategy for Numerical Approximation of Dynamical Systems with Hurwitz Stable”, Konuralp J. Math., c. 6, sy. 2, ss. 290–298, 2018.
ISNAD Çelik Kızılkan, Gülnur - Aydın, Kemal. “An Efficient Step Size Strategy for Numerical Approximation of Dynamical Systems With Hurwitz Stable”. Konuralp Journal of Mathematics 6/2 (Ekim 2018), 290-298.
JAMA Çelik Kızılkan G, Aydın K. An Efficient Step Size Strategy for Numerical Approximation of Dynamical Systems with Hurwitz Stable. Konuralp J. Math. 2018;6:290–298.
MLA Çelik Kızılkan, Gülnur ve Kemal Aydın. “An Efficient Step Size Strategy for Numerical Approximation of Dynamical Systems With Hurwitz Stable”. Konuralp Journal of Mathematics, c. 6, sy. 2, 2018, ss. 290-8.
Vancouver Çelik Kızılkan G, Aydın K. An Efficient Step Size Strategy for Numerical Approximation of Dynamical Systems with Hurwitz Stable. Konuralp J. Math. 2018;6(2):290-8.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.