Research Article
BibTex RIS Cite
Year 2019, Volume: 7 Issue: 2, 492 - 501, 15.10.2019

Abstract

References

  • [1] Biss, D.K., Dugger, D., and Isaksen, D.C., Large annihilators in Cayley-Dickson algebras, Communication in Algebra, 2008.
  • [2] Bilgici, G., Tokes¸er, U¨ ,. U¨ nal, Z., Fibonacci and Lucas Sedenions, Journal of Integer Sequences, Article 17.1.8, 20, 1-11. 2017.
  • [3] Cariow, A., and Cariowa, G., Algorithm for Multiplying Two octonions, Radioelectronics and Communications Systems (Allerton Press, Inc. USA), vol.55, No 10, (2012), pp. 464–473, 2012.
  • [4] Cariow, A., Cariowa G., An Algorithm for Fast Multiplication of Sedenios, Information Proccessing Letters, Volume 113, Issue, 9, 324-331, 2013.
  • [5] Cariow, A., and Cariowa, G., An Algoritm for multiplication of trigintaduonions, Journal of Theoretical and Applied Computer Science, Vol. 8, No. 1,pp. 50-75, 2014.
  • [6] Catarino, P. The Modified Pell and Modified k-Pell Quaternions and Octonions. Advances in Applied Clifford Algebras 26, 577-590, 2016.
  • [7] Catarino, P., k-Pell, k-Pell–Lucas and modified k-Pell sedenions, Asian-European Journal of Mathematics, 2018.
  • [8] Cerda, G., Matrix Methods in Horadam Sequences, Bol. Mat. 19(2), 97-106, 2012.
  • [9] C¸ imen, C., ˙Ipek, A., On Jacobsthal and Jacobsthal-Lucas Sedenios and Several Identities Involving These Numbers, Mathematica Aeterna, Vol. 7, No.4,447-454, 2017.
  • [10] C¸ imen, C., ˙Ipek, A, On Jacobsthal and Jacobsthal-Lucas Octonions, Mediterr. J. Math., 14:37, 1-13, 2017.
  • [11] G¨ul, K., On k-Fibonacci and k-Lucas Trigintaduonions, International Journal of Contemporary Mathematical Sciences, Vol. 13, no. 1, 1 - 10, 2018.
  • [12] Halici, S., Karatas¸, A., On a Generalization for Fibonacci Quaternions. Chaos Solitons and Fractals 98, 178–182, 2017.
  • [13] Horadam, A.F., A Generalized Fibonacci Sequence, American Mathematical Monthly, Vol. 68, pp. 455-459, 1961.
  • [14] Horadam, A. F., Complex Fibonacci Numbers and Fibonacci quaternions, Amer. Math. Monthly 70, 289–291, 1963.
  • [15] Horadam, A. F., Basic Properties of a Certain Generalized Sequence of Numbers, The Fibonacci Quarterly 3.3, 161-176, 1965.
  • [16] Horadam, A. F., Special Properties of The Sequence wn(a;b; p;q), The Fibonacci Quarterly, Vol. 5, No. 5, pp. 424-434, 1967.
  • [17] Horadam, A. F., Generating functions for powers of a certain generalized sequence of numbers. Duke Math. J 32, 437-446, 1965.
  • [18] Imaeda, K., Imaeda, M., Sedenions: algebra and analysis, Applied Mathematics and Computation, 115, 77-88, 2000.
  • [19] ˙Ipek, A., and C¸ imen, C., On (p,q)-Fibonacci Octonions, Mathematica Aeterna, Vol. 6, No.6, 923-932, 2016.
  • [20] Karatas¸, A., and Halici, S., Horadam Octonions. An. S¸ t. Univ. Ovidus Constanta, Vol. 25(3), 97-108, 2017.
  • [21] Kec¸ilioglu O, Akkus¸, I., The Fibonacci Octonions, Adv. Appl. Clifford Algebr. 25, 151–158, 2015.
  • [22] Moreno, G., The zero divisors of the Cayley-Dickson algebras over the real numbers, Bol. Soc. Mat. Mexicana (3) 4 , 13-28,1998.
  • [23] Polatlı, E., A Generalization of Fibonacci and Lucas Quaternions, Advances in Applied Clifford Algebras, 26 (2), 719-730, 2016.
  • [24] Makarov, O.M., An algorithm for the multiplication of two quaternions, U.S.S.R. Comput. MathsMath. Phys. Vol. 17, pp. 221-222, 1978.
  • [25] Szynal-Liana, A. and I. Wloch I., The Pell quaternions and the Pell octonions. Advances in Applied Clifford Algebras 26.1, 435-440, 2016.
  • [26] Tasci, D., On k-Jacobsthal and k-Jacobsthal-Lucas Quaternions, Journal of Science and Arts, year 17, No. 3(40), pp. 469-476, 2017.

Horadam $2^{k}$-Ions

Year 2019, Volume: 7 Issue: 2, 492 - 501, 15.10.2019

Abstract

In this paper, we generalize Fibonacci quaternion, octonion, sedenion, trigintaduonion, etc. and define Horadam $2^{k}$-ions and investigate their properties. Each Horadam (such as Fibonacci, Lucas, Pell) quaternions, octonions and sedenions are Horadam $2^{k}$-ions. We also present connection to some earlier works.

References

  • [1] Biss, D.K., Dugger, D., and Isaksen, D.C., Large annihilators in Cayley-Dickson algebras, Communication in Algebra, 2008.
  • [2] Bilgici, G., Tokes¸er, U¨ ,. U¨ nal, Z., Fibonacci and Lucas Sedenions, Journal of Integer Sequences, Article 17.1.8, 20, 1-11. 2017.
  • [3] Cariow, A., and Cariowa, G., Algorithm for Multiplying Two octonions, Radioelectronics and Communications Systems (Allerton Press, Inc. USA), vol.55, No 10, (2012), pp. 464–473, 2012.
  • [4] Cariow, A., Cariowa G., An Algorithm for Fast Multiplication of Sedenios, Information Proccessing Letters, Volume 113, Issue, 9, 324-331, 2013.
  • [5] Cariow, A., and Cariowa, G., An Algoritm for multiplication of trigintaduonions, Journal of Theoretical and Applied Computer Science, Vol. 8, No. 1,pp. 50-75, 2014.
  • [6] Catarino, P. The Modified Pell and Modified k-Pell Quaternions and Octonions. Advances in Applied Clifford Algebras 26, 577-590, 2016.
  • [7] Catarino, P., k-Pell, k-Pell–Lucas and modified k-Pell sedenions, Asian-European Journal of Mathematics, 2018.
  • [8] Cerda, G., Matrix Methods in Horadam Sequences, Bol. Mat. 19(2), 97-106, 2012.
  • [9] C¸ imen, C., ˙Ipek, A., On Jacobsthal and Jacobsthal-Lucas Sedenios and Several Identities Involving These Numbers, Mathematica Aeterna, Vol. 7, No.4,447-454, 2017.
  • [10] C¸ imen, C., ˙Ipek, A, On Jacobsthal and Jacobsthal-Lucas Octonions, Mediterr. J. Math., 14:37, 1-13, 2017.
  • [11] G¨ul, K., On k-Fibonacci and k-Lucas Trigintaduonions, International Journal of Contemporary Mathematical Sciences, Vol. 13, no. 1, 1 - 10, 2018.
  • [12] Halici, S., Karatas¸, A., On a Generalization for Fibonacci Quaternions. Chaos Solitons and Fractals 98, 178–182, 2017.
  • [13] Horadam, A.F., A Generalized Fibonacci Sequence, American Mathematical Monthly, Vol. 68, pp. 455-459, 1961.
  • [14] Horadam, A. F., Complex Fibonacci Numbers and Fibonacci quaternions, Amer. Math. Monthly 70, 289–291, 1963.
  • [15] Horadam, A. F., Basic Properties of a Certain Generalized Sequence of Numbers, The Fibonacci Quarterly 3.3, 161-176, 1965.
  • [16] Horadam, A. F., Special Properties of The Sequence wn(a;b; p;q), The Fibonacci Quarterly, Vol. 5, No. 5, pp. 424-434, 1967.
  • [17] Horadam, A. F., Generating functions for powers of a certain generalized sequence of numbers. Duke Math. J 32, 437-446, 1965.
  • [18] Imaeda, K., Imaeda, M., Sedenions: algebra and analysis, Applied Mathematics and Computation, 115, 77-88, 2000.
  • [19] ˙Ipek, A., and C¸ imen, C., On (p,q)-Fibonacci Octonions, Mathematica Aeterna, Vol. 6, No.6, 923-932, 2016.
  • [20] Karatas¸, A., and Halici, S., Horadam Octonions. An. S¸ t. Univ. Ovidus Constanta, Vol. 25(3), 97-108, 2017.
  • [21] Kec¸ilioglu O, Akkus¸, I., The Fibonacci Octonions, Adv. Appl. Clifford Algebr. 25, 151–158, 2015.
  • [22] Moreno, G., The zero divisors of the Cayley-Dickson algebras over the real numbers, Bol. Soc. Mat. Mexicana (3) 4 , 13-28,1998.
  • [23] Polatlı, E., A Generalization of Fibonacci and Lucas Quaternions, Advances in Applied Clifford Algebras, 26 (2), 719-730, 2016.
  • [24] Makarov, O.M., An algorithm for the multiplication of two quaternions, U.S.S.R. Comput. MathsMath. Phys. Vol. 17, pp. 221-222, 1978.
  • [25] Szynal-Liana, A. and I. Wloch I., The Pell quaternions and the Pell octonions. Advances in Applied Clifford Algebras 26.1, 435-440, 2016.
  • [26] Tasci, D., On k-Jacobsthal and k-Jacobsthal-Lucas Quaternions, Journal of Science and Arts, year 17, No. 3(40), pp. 469-476, 2017.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Melih Göcen

Yüksel Soykan

Publication Date October 15, 2019
Submission Date July 2, 2019
Acceptance Date October 30, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Göcen, M., & Soykan, Y. (2019). Horadam $2^{k}$-Ions. Konuralp Journal of Mathematics, 7(2), 492-501.
AMA Göcen M, Soykan Y. Horadam $2^{k}$-Ions. Konuralp J. Math. October 2019;7(2):492-501.
Chicago Göcen, Melih, and Yüksel Soykan. “Horadam $2^{k}$-Ions”. Konuralp Journal of Mathematics 7, no. 2 (October 2019): 492-501.
EndNote Göcen M, Soykan Y (October 1, 2019) Horadam $2^{k}$-Ions. Konuralp Journal of Mathematics 7 2 492–501.
IEEE M. Göcen and Y. Soykan, “Horadam $2^{k}$-Ions”, Konuralp J. Math., vol. 7, no. 2, pp. 492–501, 2019.
ISNAD Göcen, Melih - Soykan, Yüksel. “Horadam $2^{k}$-Ions”. Konuralp Journal of Mathematics 7/2 (October 2019), 492-501.
JAMA Göcen M, Soykan Y. Horadam $2^{k}$-Ions. Konuralp J. Math. 2019;7:492–501.
MLA Göcen, Melih and Yüksel Soykan. “Horadam $2^{k}$-Ions”. Konuralp Journal of Mathematics, vol. 7, no. 2, 2019, pp. 492-01.
Vancouver Göcen M, Soykan Y. Horadam $2^{k}$-Ions. Konuralp J. Math. 2019;7(2):492-501.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.