Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 1, 14 - 20, 15.04.2020

Abstract

References

  • [1] F. S. Aziz and A. R. S. Juma, Estimating coefficients for subclasses of meromorphic bi-univalent functions associated with linear operator, TWMS J. Appl. Eng. Math. 4 (1) (2014), 39–44.
  • [2] S. Bulut, N. Magesh and V. K. Balaji, Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris 353 (2) (2015), 113–116.
  • [3] S. A. Halim, S. G. Hamidi, and V. Ravichandran, Coefficient estimates for meromorphic bi-univalent functions, arXiv:1108.4089, 1–9.
  • [4] S. G. Hamidi, S. A. Halim and J. M. Jahangiri, Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris 351 (9-10) (2013), 349–352.
  • [5] S. G. Hamidi, S. A. Halim and J. M. Jahangiri, Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. 2013, Art. ID 498159, 4 pp.
  • [6] J. M. Jahangiri and S. G. Hamidi, Coefficients of meromorphic bi-Bazilevic functions, J. Complex Anal. 2014, Art. ID 263917, 4 pp.
  • [7] S. Joshi, S. Joshi and H. Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike functions, J. Egyptian Math. Soc. 24 (4) (2016), 522–525.
  • [8] T. Panigrahi, Coefficient bounds for certain subclasses of meromorphic and bi-univalent functions, Bull. Korean Math. Soc. 50 (5) (2013), 1531–1538.
  • [9] F. M. Sakar, Estimating coefficients for certain subclasses of meromorphic and bi-univalent functions, J. Inequal. Appl. 2018, 2018:283.
  • [10] S. Salehian and A. Zireh, Coefficient estimates for certain subclass of meromorphic and bi-univalent functions, Commun. Korean Math. Soc. 32 (2) (2017), 389–397.
  • [11] Y. J. Sim and O. S. Kwon, Certain subclasses of meromorphically bi-univalent functions, Bull. Malays. Math. Sci. Soc. 40 (2) (2017), 841–855.
  • [12] H. M. Srivastava, S. B. Joshi, S. S. Joshi and H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math. 5 (Special Issue) (2016), 250–258.
  • [13] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (10) (2010), 1188–1192.
  • [14] P. P. Vyas and S. Kant, Initial coefficients bounds for an unified class of meromorphic bi-univalent functions, Int. J. Math. Appl., 6(1-B) (2018), 209–114.
  • [15] H.-G. Xiao and Q.-H. Xu, Coefficient estimates for three generalized classes of meromorphic and bi-univalent functions, Filomat 29 (7) (2015), 1601–1612.

Coefficient Estimates for Certain General Subclasses of Meromorphic Bi-Univalent Functions

Year 2020, Volume: 8 Issue: 1, 14 - 20, 15.04.2020

Abstract

In the present investigation, we introduce two interesting general subclasses of meromorphic and bi-univalent functions. Further, we find estimates on the initial coefficient $|b_{0}|$ and $|b_{1}|$ for functions belonging to these subclasses. Some other closely related results are also represented.

References

  • [1] F. S. Aziz and A. R. S. Juma, Estimating coefficients for subclasses of meromorphic bi-univalent functions associated with linear operator, TWMS J. Appl. Eng. Math. 4 (1) (2014), 39–44.
  • [2] S. Bulut, N. Magesh and V. K. Balaji, Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris 353 (2) (2015), 113–116.
  • [3] S. A. Halim, S. G. Hamidi, and V. Ravichandran, Coefficient estimates for meromorphic bi-univalent functions, arXiv:1108.4089, 1–9.
  • [4] S. G. Hamidi, S. A. Halim and J. M. Jahangiri, Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris 351 (9-10) (2013), 349–352.
  • [5] S. G. Hamidi, S. A. Halim and J. M. Jahangiri, Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. 2013, Art. ID 498159, 4 pp.
  • [6] J. M. Jahangiri and S. G. Hamidi, Coefficients of meromorphic bi-Bazilevic functions, J. Complex Anal. 2014, Art. ID 263917, 4 pp.
  • [7] S. Joshi, S. Joshi and H. Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike functions, J. Egyptian Math. Soc. 24 (4) (2016), 522–525.
  • [8] T. Panigrahi, Coefficient bounds for certain subclasses of meromorphic and bi-univalent functions, Bull. Korean Math. Soc. 50 (5) (2013), 1531–1538.
  • [9] F. M. Sakar, Estimating coefficients for certain subclasses of meromorphic and bi-univalent functions, J. Inequal. Appl. 2018, 2018:283.
  • [10] S. Salehian and A. Zireh, Coefficient estimates for certain subclass of meromorphic and bi-univalent functions, Commun. Korean Math. Soc. 32 (2) (2017), 389–397.
  • [11] Y. J. Sim and O. S. Kwon, Certain subclasses of meromorphically bi-univalent functions, Bull. Malays. Math. Sci. Soc. 40 (2) (2017), 841–855.
  • [12] H. M. Srivastava, S. B. Joshi, S. S. Joshi and H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math. 5 (Special Issue) (2016), 250–258.
  • [13] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (10) (2010), 1188–1192.
  • [14] P. P. Vyas and S. Kant, Initial coefficients bounds for an unified class of meromorphic bi-univalent functions, Int. J. Math. Appl., 6(1-B) (2018), 209–114.
  • [15] H.-G. Xiao and Q.-H. Xu, Coefficient estimates for three generalized classes of meromorphic and bi-univalent functions, Filomat 29 (7) (2015), 1601–1612.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Serap Bulut

N. Magesh This is me

J. Sivapalan This is me

Publication Date April 15, 2020
Submission Date January 9, 2019
Acceptance Date February 1, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Bulut, S., Magesh, N., & Sivapalan, J. (2020). Coefficient Estimates for Certain General Subclasses of Meromorphic Bi-Univalent Functions. Konuralp Journal of Mathematics, 8(1), 14-20.
AMA Bulut S, Magesh N, Sivapalan J. Coefficient Estimates for Certain General Subclasses of Meromorphic Bi-Univalent Functions. Konuralp J. Math. April 2020;8(1):14-20.
Chicago Bulut, Serap, N. Magesh, and J. Sivapalan. “Coefficient Estimates for Certain General Subclasses of Meromorphic Bi-Univalent Functions”. Konuralp Journal of Mathematics 8, no. 1 (April 2020): 14-20.
EndNote Bulut S, Magesh N, Sivapalan J (April 1, 2020) Coefficient Estimates for Certain General Subclasses of Meromorphic Bi-Univalent Functions. Konuralp Journal of Mathematics 8 1 14–20.
IEEE S. Bulut, N. Magesh, and J. Sivapalan, “Coefficient Estimates for Certain General Subclasses of Meromorphic Bi-Univalent Functions”, Konuralp J. Math., vol. 8, no. 1, pp. 14–20, 2020.
ISNAD Bulut, Serap et al. “Coefficient Estimates for Certain General Subclasses of Meromorphic Bi-Univalent Functions”. Konuralp Journal of Mathematics 8/1 (April 2020), 14-20.
JAMA Bulut S, Magesh N, Sivapalan J. Coefficient Estimates for Certain General Subclasses of Meromorphic Bi-Univalent Functions. Konuralp J. Math. 2020;8:14–20.
MLA Bulut, Serap et al. “Coefficient Estimates for Certain General Subclasses of Meromorphic Bi-Univalent Functions”. Konuralp Journal of Mathematics, vol. 8, no. 1, 2020, pp. 14-20.
Vancouver Bulut S, Magesh N, Sivapalan J. Coefficient Estimates for Certain General Subclasses of Meromorphic Bi-Univalent Functions. Konuralp J. Math. 2020;8(1):14-20.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.