Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 1, 57 - 61, 15.04.2020

Abstract

References

  • [1] Barman, A., Semi-symmetric non-metric connection in a P-Sasakian manifold, Novi Sad J. Math., 43(2013), 117-124.
  • [2] Barman A., A type of semi-symmetric non-metric connection on non-degenerate hypersurfaces of semi-Riemannian manifolds, Facta Univer. (NIS), 29(2014), 13-23.
  • [3] Barman A., On N(k)-contact metric manifolds admitting a type of semi-symmetric non-metric connection, Acta Mathematica Universitatis Comenianae, 86(2017), 81-90.
  • [4] Barman A., On LP-Sasakian manifolds admitting a semi-symmetric non-metric connection, Kyungpook Math. J., 58(2018), 105-116.
  • [5] Petrov, A. Z., Einstein spaces, Pergamon Press, Oxford, 1949.
  • [6] Barman A. and Ghosh, G., Concircular Curvature Tensor of a Semi-symmetric non-metric Connection on P -Sasakian Manifolds, Analele Univ. de Vest,Timi. Seria Matem. Inform., 56(2016), 47-58.
  • [7] Friedman, A. and Schouten, J. A., U ber die Geometric der halbsymmetrischen U bertragung, Math., Zeitschr., 21(1924), 211-223.
  • [8] Barman A. and De U. C., Semi-symmetric non-metric connections on Kenmotsu manifolds, Romanian J. Math. and Comp. Sci., 5(2014), 13-24.
  • [9] O’neill, B., Semi-Riemannian geometry with applications to relativity, Academic press, p-77, Inc. New York, 1983.
  • [10] Barua B. and Mukhopadhyay, S., A sequence of semi-symmetric connections on a Riemannian manifold, Proceedings of seventh national seminar on Finsler, Lagrange and Hamiltonian spaces, 1992, Brasov, Romania.
  • [11] Prvanovic, M., On pseudo metric semi-symmetric connections, Pub. De L’ Institut Math., Nouvelle serie, 18(1975), 157-164.
  • [12] Chaki, M. C. : On pseudo symmetric manifolds, Analele Stiintifice Ale Universitatii, ” AL. I. CUZA ” DIN IASI, 33(1987), 53-58.
  • [13] Agashe N. S. and Chafle. M. R., A semi-symmetric non-metric connection on a Riemannian Manifold, Indian J. Pure Appl. Math., 23(1992), 399-409.
  • [14] Andonie, O. C., On semi-symmetric non-metric connection on a Riemannian manifold, Ann. Fac. Sci. De Kinshasa, Zaire Sect. Math. Phys., 2(1976).
  • [15] Liang, Y., On semi-symmetric recurrent-metric connection, Tensor, N. S., 55 (1994), 107-112.

On Riemannian Manifolds Admitting a Type of Semi-Symmetric Pseudo Symmetric-Connection

Year 2020, Volume: 8 Issue: 1, 57 - 61, 15.04.2020

Abstract

The object of the present paper is to study a special type of semi-symmetric pseudo symmetric-connection on a Riemannian manifold. Finally, we has been studied some properties on Riemannian manifold with respect to a special type of semi-symmetric pseudo symmetric connection.


References

  • [1] Barman, A., Semi-symmetric non-metric connection in a P-Sasakian manifold, Novi Sad J. Math., 43(2013), 117-124.
  • [2] Barman A., A type of semi-symmetric non-metric connection on non-degenerate hypersurfaces of semi-Riemannian manifolds, Facta Univer. (NIS), 29(2014), 13-23.
  • [3] Barman A., On N(k)-contact metric manifolds admitting a type of semi-symmetric non-metric connection, Acta Mathematica Universitatis Comenianae, 86(2017), 81-90.
  • [4] Barman A., On LP-Sasakian manifolds admitting a semi-symmetric non-metric connection, Kyungpook Math. J., 58(2018), 105-116.
  • [5] Petrov, A. Z., Einstein spaces, Pergamon Press, Oxford, 1949.
  • [6] Barman A. and Ghosh, G., Concircular Curvature Tensor of a Semi-symmetric non-metric Connection on P -Sasakian Manifolds, Analele Univ. de Vest,Timi. Seria Matem. Inform., 56(2016), 47-58.
  • [7] Friedman, A. and Schouten, J. A., U ber die Geometric der halbsymmetrischen U bertragung, Math., Zeitschr., 21(1924), 211-223.
  • [8] Barman A. and De U. C., Semi-symmetric non-metric connections on Kenmotsu manifolds, Romanian J. Math. and Comp. Sci., 5(2014), 13-24.
  • [9] O’neill, B., Semi-Riemannian geometry with applications to relativity, Academic press, p-77, Inc. New York, 1983.
  • [10] Barua B. and Mukhopadhyay, S., A sequence of semi-symmetric connections on a Riemannian manifold, Proceedings of seventh national seminar on Finsler, Lagrange and Hamiltonian spaces, 1992, Brasov, Romania.
  • [11] Prvanovic, M., On pseudo metric semi-symmetric connections, Pub. De L’ Institut Math., Nouvelle serie, 18(1975), 157-164.
  • [12] Chaki, M. C. : On pseudo symmetric manifolds, Analele Stiintifice Ale Universitatii, ” AL. I. CUZA ” DIN IASI, 33(1987), 53-58.
  • [13] Agashe N. S. and Chafle. M. R., A semi-symmetric non-metric connection on a Riemannian Manifold, Indian J. Pure Appl. Math., 23(1992), 399-409.
  • [14] Andonie, O. C., On semi-symmetric non-metric connection on a Riemannian manifold, Ann. Fac. Sci. De Kinshasa, Zaire Sect. Math. Phys., 2(1976).
  • [15] Liang, Y., On semi-symmetric recurrent-metric connection, Tensor, N. S., 55 (1994), 107-112.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ajit Barman

Publication Date April 15, 2020
Submission Date April 2, 2019
Acceptance Date April 2, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Barman, A. (2020). On Riemannian Manifolds Admitting a Type of Semi-Symmetric Pseudo Symmetric-Connection. Konuralp Journal of Mathematics, 8(1), 57-61.
AMA Barman A. On Riemannian Manifolds Admitting a Type of Semi-Symmetric Pseudo Symmetric-Connection. Konuralp J. Math. April 2020;8(1):57-61.
Chicago Barman, Ajit. “On Riemannian Manifolds Admitting a Type of Semi-Symmetric Pseudo Symmetric-Connection”. Konuralp Journal of Mathematics 8, no. 1 (April 2020): 57-61.
EndNote Barman A (April 1, 2020) On Riemannian Manifolds Admitting a Type of Semi-Symmetric Pseudo Symmetric-Connection. Konuralp Journal of Mathematics 8 1 57–61.
IEEE A. Barman, “On Riemannian Manifolds Admitting a Type of Semi-Symmetric Pseudo Symmetric-Connection”, Konuralp J. Math., vol. 8, no. 1, pp. 57–61, 2020.
ISNAD Barman, Ajit. “On Riemannian Manifolds Admitting a Type of Semi-Symmetric Pseudo Symmetric-Connection”. Konuralp Journal of Mathematics 8/1 (April 2020), 57-61.
JAMA Barman A. On Riemannian Manifolds Admitting a Type of Semi-Symmetric Pseudo Symmetric-Connection. Konuralp J. Math. 2020;8:57–61.
MLA Barman, Ajit. “On Riemannian Manifolds Admitting a Type of Semi-Symmetric Pseudo Symmetric-Connection”. Konuralp Journal of Mathematics, vol. 8, no. 1, 2020, pp. 57-61.
Vancouver Barman A. On Riemannian Manifolds Admitting a Type of Semi-Symmetric Pseudo Symmetric-Connection. Konuralp J. Math. 2020;8(1):57-61.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.