[1] A. Akgul, Finding initial coefficients for a class of bi-univalent functions given by q-derivative, AIP Conference Proceedings ,1926, 020001(2018).
[2] A. Akgul, On the coefficient estimates of analytic and bi-univalent m-fold symmetric functions, Mathematica Aeterna, 7(3) (1993) 253-260.
[3] H. Aldweby and M. Darus, A subclass of harmonic U univalent functions associated with q-analogue of Dziok-Srivastava operator, ISRN Mathematical Analysis, 2013 (2013), Article ID 382312, 6 pages.
[4] H. Aldweby and M. Darus, Coefficient estimates for initial taylor-maclaurin coefficients for a subclass of analytic and bi-univalent functions associated with q-derivative operator, Recent Trends in Pure and Applied Mathematics, 2017 (2017).
[5] S¸. Altinkaya, S. Yalc¸in, On some subclasses of m-fold symmetric bi-univalent functions, Communications Faculty of Sciences University of Series A1: Mathematics and Statistics, 67(1) (2018) 29-36.
[6] A. Aral, V. Gupta and R. P. Agarwal, Application of q-Calculus in Operator Theory, Springer, New York, USA, 2013.
[7] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Universitatis Babes¸-Bolyai, Mathematica, 31(2) (1986) 70-7.
[8] S. Bulut, Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions, Turkish J. Math., 40, (2016) 1386-1397.
[9] S. Bulut, Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator, Communications Faculty of Sciences University of Series A1: Mathematics and Statistics, 66(1) (2017) 108-114.
[10] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenchaften, Springer, New York, NY, USA, 1983.
[11] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2004), 1529-1573.
[12] S.G Hamiidi and J.M. Jahangiri, Unpredictability of the coefficients of m-fold symmetric bi-starlike functions , Internat. J. Math., 25(7), (2014) 1-8.
[13] F. H. Jackson , On q-definite integrals, The Quarterly Journal of Pure and Applied Mathematics , 41 (1910), 193-203.
[14] F. H. Jackson , On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh , 46 (1908), 253-281.
[15] M. Lewin, On a coefficients problem of bi-univalent functions, Proc. Am. Math. Soc., 18 (1967), 63-68.
[16] A. Mohammmed, M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik, 65 (2013), 454-465.
[17] F. Muge Sakar, M. O. Guney, Coefficient estimates for certain subclasses of m-mold symmetric bi-univalent functions defined by the q-derivative operator, Konuralp Journal of Mathematics, 6(2) (2018), 279-285.
[18] C.H. Pommerenke, Univalent Functions, Vandendoeck and Rupercht, Gottingen, 1975.
[19] T. M. Seoudy and M. K. Aouf, Convolution properties for C certain classes of analytic functions defined by q-derivative operator, Abstract and Applied Analysis, 2014 (2014), Article ID 846719, 7 pages.
[20] T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order , Journal of Mathematical Inequalities , 10(1) (2016), 135-145.
[21] T. G. Shaba, On some new subclass of bi-univalent functions associated with the Opoola differential operator, Open J. Math. Anal., 4 (2), (2020), 74–79.
[22] T. G. Shaba, Certain new subclasses of m-fold symmetric bi-pseudo-starlike functions using Q-derivative operator, Open J. Math. Anal., 5 (1), (2021), 42–50.
[23] T. G. Shaba, Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator, Turkish Journal of Inequalities, 4 (2) (2020), 50–58.
[24] T. G. Shaba, On some subclasses of bi-pseudo-starlike functions defined by Salagean differential operator, Asia Pac. J. Math., 8 (6) (2021), 1–11; Available online at https://doi:10.28924/apjm/8-6 .
[25] T. G. Shaba, A. B. Patil, Coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions associated with pseudo-starlike functions, Earthline Journal of Mathematical Sciences, 6 (2) (2021), 2581-8147.
[26] H.M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(10), (2010), 1188-1192.
[27] H.M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficients bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical Journal, 7(2), (2014), 1-10.
[28] H. M. Srivastava, A. Motamednezhad and E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), Article ID 172, 1-12.
[29] S. Sumer¨ Eker, Coefficients bounds for subclasses of m-fold symmetric bi-univalent functions, Turkish J. Math., 40(3), (2016), 641-646.
[30] A.k. Wanas, S. Yalc¸in, Horadam polynomials and their applications to new family of bi-univalent functions with respect to symmetric conjugate points, Proyecciones, 40, (2021), 107-116.
[31] A.k. Wanas, Applications of (M,N)-Lucas polynomials for holomorphic and bi-univalent functions, Filomat, 34, (2020), 3361-3368.
[32] H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59, (2019), 493-503.
[33] A. K. Wanas, A. L. Alina, Applications of Horadam polynomials on Bazilevicˇ bi-univalent function satisfying subordinate conditions, J. Phys. : Conf. Ser., 1294 (2019), 1-6.
Certain New Subclasses of $t$-fold Symmetric Bi-univalent Function Using $Q$-derivative Operator
Year 2021,
Volume: 9 Issue: 1, 137 - 142, 28.04.2021
In this current study, we introduced and investigated two new subclasses of the bi-univalent functions associated with $q$-derivative operator; both $f(z)$ and $f^{-1}(z)$ are $t$-fold symmetric holomorphic functions in the open unit disk. Among other results, upper bounds for the coefficients $|\rho_{t+1}|$ and $|\rho_{2t+1}|$ are found in this study. Also certain special cases are indicated.
[1] A. Akgul, Finding initial coefficients for a class of bi-univalent functions given by q-derivative, AIP Conference Proceedings ,1926, 020001(2018).
[2] A. Akgul, On the coefficient estimates of analytic and bi-univalent m-fold symmetric functions, Mathematica Aeterna, 7(3) (1993) 253-260.
[3] H. Aldweby and M. Darus, A subclass of harmonic U univalent functions associated with q-analogue of Dziok-Srivastava operator, ISRN Mathematical Analysis, 2013 (2013), Article ID 382312, 6 pages.
[4] H. Aldweby and M. Darus, Coefficient estimates for initial taylor-maclaurin coefficients for a subclass of analytic and bi-univalent functions associated with q-derivative operator, Recent Trends in Pure and Applied Mathematics, 2017 (2017).
[5] S¸. Altinkaya, S. Yalc¸in, On some subclasses of m-fold symmetric bi-univalent functions, Communications Faculty of Sciences University of Series A1: Mathematics and Statistics, 67(1) (2018) 29-36.
[6] A. Aral, V. Gupta and R. P. Agarwal, Application of q-Calculus in Operator Theory, Springer, New York, USA, 2013.
[7] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Universitatis Babes¸-Bolyai, Mathematica, 31(2) (1986) 70-7.
[8] S. Bulut, Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions, Turkish J. Math., 40, (2016) 1386-1397.
[9] S. Bulut, Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator, Communications Faculty of Sciences University of Series A1: Mathematics and Statistics, 66(1) (2017) 108-114.
[10] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenchaften, Springer, New York, NY, USA, 1983.
[11] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2004), 1529-1573.
[12] S.G Hamiidi and J.M. Jahangiri, Unpredictability of the coefficients of m-fold symmetric bi-starlike functions , Internat. J. Math., 25(7), (2014) 1-8.
[13] F. H. Jackson , On q-definite integrals, The Quarterly Journal of Pure and Applied Mathematics , 41 (1910), 193-203.
[14] F. H. Jackson , On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh , 46 (1908), 253-281.
[15] M. Lewin, On a coefficients problem of bi-univalent functions, Proc. Am. Math. Soc., 18 (1967), 63-68.
[16] A. Mohammmed, M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik, 65 (2013), 454-465.
[17] F. Muge Sakar, M. O. Guney, Coefficient estimates for certain subclasses of m-mold symmetric bi-univalent functions defined by the q-derivative operator, Konuralp Journal of Mathematics, 6(2) (2018), 279-285.
[18] C.H. Pommerenke, Univalent Functions, Vandendoeck and Rupercht, Gottingen, 1975.
[19] T. M. Seoudy and M. K. Aouf, Convolution properties for C certain classes of analytic functions defined by q-derivative operator, Abstract and Applied Analysis, 2014 (2014), Article ID 846719, 7 pages.
[20] T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order , Journal of Mathematical Inequalities , 10(1) (2016), 135-145.
[21] T. G. Shaba, On some new subclass of bi-univalent functions associated with the Opoola differential operator, Open J. Math. Anal., 4 (2), (2020), 74–79.
[22] T. G. Shaba, Certain new subclasses of m-fold symmetric bi-pseudo-starlike functions using Q-derivative operator, Open J. Math. Anal., 5 (1), (2021), 42–50.
[23] T. G. Shaba, Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator, Turkish Journal of Inequalities, 4 (2) (2020), 50–58.
[24] T. G. Shaba, On some subclasses of bi-pseudo-starlike functions defined by Salagean differential operator, Asia Pac. J. Math., 8 (6) (2021), 1–11; Available online at https://doi:10.28924/apjm/8-6 .
[25] T. G. Shaba, A. B. Patil, Coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions associated with pseudo-starlike functions, Earthline Journal of Mathematical Sciences, 6 (2) (2021), 2581-8147.
[26] H.M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(10), (2010), 1188-1192.
[27] H.M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficients bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical Journal, 7(2), (2014), 1-10.
[28] H. M. Srivastava, A. Motamednezhad and E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), Article ID 172, 1-12.
[29] S. Sumer¨ Eker, Coefficients bounds for subclasses of m-fold symmetric bi-univalent functions, Turkish J. Math., 40(3), (2016), 641-646.
[30] A.k. Wanas, S. Yalc¸in, Horadam polynomials and their applications to new family of bi-univalent functions with respect to symmetric conjugate points, Proyecciones, 40, (2021), 107-116.
[31] A.k. Wanas, Applications of (M,N)-Lucas polynomials for holomorphic and bi-univalent functions, Filomat, 34, (2020), 3361-3368.
[32] H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59, (2019), 493-503.
[33] A. K. Wanas, A. L. Alina, Applications of Horadam polynomials on Bazilevicˇ bi-univalent function satisfying subordinate conditions, J. Phys. : Conf. Ser., 1294 (2019), 1-6.
Shaba, T. (2021). Certain New Subclasses of $t$-fold Symmetric Bi-univalent Function Using $Q$-derivative Operator. Konuralp Journal of Mathematics, 9(1), 137-142.
AMA
Shaba T. Certain New Subclasses of $t$-fold Symmetric Bi-univalent Function Using $Q$-derivative Operator. Konuralp J. Math. April 2021;9(1):137-142.
Chicago
Shaba, Timilehin. “Certain New Subclasses of $t$-Fold Symmetric Bi-Univalent Function Using $Q$-Derivative Operator”. Konuralp Journal of Mathematics 9, no. 1 (April 2021): 137-42.
EndNote
Shaba T (April 1, 2021) Certain New Subclasses of $t$-fold Symmetric Bi-univalent Function Using $Q$-derivative Operator. Konuralp Journal of Mathematics 9 1 137–142.
IEEE
T. Shaba, “Certain New Subclasses of $t$-fold Symmetric Bi-univalent Function Using $Q$-derivative Operator”, Konuralp J. Math., vol. 9, no. 1, pp. 137–142, 2021.
ISNAD
Shaba, Timilehin. “Certain New Subclasses of $t$-Fold Symmetric Bi-Univalent Function Using $Q$-Derivative Operator”. Konuralp Journal of Mathematics 9/1 (April 2021), 137-142.
JAMA
Shaba T. Certain New Subclasses of $t$-fold Symmetric Bi-univalent Function Using $Q$-derivative Operator. Konuralp J. Math. 2021;9:137–142.
MLA
Shaba, Timilehin. “Certain New Subclasses of $t$-Fold Symmetric Bi-Univalent Function Using $Q$-Derivative Operator”. Konuralp Journal of Mathematics, vol. 9, no. 1, 2021, pp. 137-42.
Vancouver
Shaba T. Certain New Subclasses of $t$-fold Symmetric Bi-univalent Function Using $Q$-derivative Operator. Konuralp J. Math. 2021;9(1):137-42.