Research Article
BibTex RIS Cite
Year 2021, Volume: 9 Issue: 2, 356 - 370, 15.10.2021

Abstract

References

  • [1] M. A. Ali, H. Budak, Z. Zhang, and H. Yildrim, Some New Simpson’s type inequalities for co-ordinated convex functions in quantum calculus, Mathematical Methods in the Applied Sciences, In press, 2020.
  • [2] M. Alomari, M. Darus, and S. S. Dragomir, New inequalities of Simpson’s type for s-convex functions with appli- cations, RGMIA Res. Rep. Coll., vol. 12, no. 4, 2009.
  • [3] H. Budak, S. Erden, and M. A. Ali, Simpson and Newton type inequalities for convex functions via newly de…ned quantum integrals, Mathematical Methods in the Applied Sciences, https://doi.org/10.1002/mma.6742.
  • [4] H. Budak, H. Kara and R. Kapucu, New midpoint type inequalities for generalized fractional integral, Computational Methods for Di¤erential Equations, 2021.
  • [5] H. Budak, E. Pehlivan and P. Kösem, On new extensions of Hermite-Hadamard inequalities for generalized frac- tional integrals. Sahand Communications in Mathematical Analysis, 2021.
  • [6] J. Chen and X. Huang, Some new inequalities of Simpson’s type for s-convex functions via fractionalintegrals, Filomat 31(15), 4989–4997 (2017)
  • [7] S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson’s inequality and applications, J. Inequal. Appl. 5 (2000) 533–579.
  • [8] S. S. Dragomir and R. P. Agarwal, Two inequalities for di¤ erentiable mappings and applications to special means of real numbers and to trapezoidal formula, Applied Mathematics Letters, 11(5), 1998, 91-95.
  • [9] T. Du, Y. Li, and Z. Yang, A generalization of Simpson’s inequality via di¤ erentiable mapping using extended (s;m)-convex functions, Appl. Math. Comput., 293, 2017, 358–369.
  • [10] S. Erden, S.Iftikhar, R. M. Delavar, P. Kumam, P. Thounthong and W. Kumam, On generalizations of some inequalities for convex functions via quantum integrals, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, (2020) 114(3), 1-15. Doi: 10.1007/s13398-020-00841-3.
  • [11] F. Ertu¼gral and M. Z. Sarikaya, Simpson type integral inequalities for generalized fractional integral, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113(4), 2019, 3115-3124.

On Parameterized Simpson, Midpoint and Trapezoid Type Inequalities for Differentiable$\ \left( \eta _{1},\eta _{2}\right) -$Convex Functions via Generalized Fractional Integrals

Year 2021, Volume: 9 Issue: 2, 356 - 370, 15.10.2021

Abstract

In this paper, we first obtain an identity for differentiable mappings. Then we establish some new generalized inequalities for differentiable $\left( \eta _{1},\eta _{2}\right) -$ convex functions involving some parameters and generalized fractional integrals. We show that these results reduces to several new Simpson, midpoint and trapezoid type inequalities. Some special cases are also discussed.

References

  • [1] M. A. Ali, H. Budak, Z. Zhang, and H. Yildrim, Some New Simpson’s type inequalities for co-ordinated convex functions in quantum calculus, Mathematical Methods in the Applied Sciences, In press, 2020.
  • [2] M. Alomari, M. Darus, and S. S. Dragomir, New inequalities of Simpson’s type for s-convex functions with appli- cations, RGMIA Res. Rep. Coll., vol. 12, no. 4, 2009.
  • [3] H. Budak, S. Erden, and M. A. Ali, Simpson and Newton type inequalities for convex functions via newly de…ned quantum integrals, Mathematical Methods in the Applied Sciences, https://doi.org/10.1002/mma.6742.
  • [4] H. Budak, H. Kara and R. Kapucu, New midpoint type inequalities for generalized fractional integral, Computational Methods for Di¤erential Equations, 2021.
  • [5] H. Budak, E. Pehlivan and P. Kösem, On new extensions of Hermite-Hadamard inequalities for generalized frac- tional integrals. Sahand Communications in Mathematical Analysis, 2021.
  • [6] J. Chen and X. Huang, Some new inequalities of Simpson’s type for s-convex functions via fractionalintegrals, Filomat 31(15), 4989–4997 (2017)
  • [7] S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson’s inequality and applications, J. Inequal. Appl. 5 (2000) 533–579.
  • [8] S. S. Dragomir and R. P. Agarwal, Two inequalities for di¤ erentiable mappings and applications to special means of real numbers and to trapezoidal formula, Applied Mathematics Letters, 11(5), 1998, 91-95.
  • [9] T. Du, Y. Li, and Z. Yang, A generalization of Simpson’s inequality via di¤ erentiable mapping using extended (s;m)-convex functions, Appl. Math. Comput., 293, 2017, 358–369.
  • [10] S. Erden, S.Iftikhar, R. M. Delavar, P. Kumam, P. Thounthong and W. Kumam, On generalizations of some inequalities for convex functions via quantum integrals, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, (2020) 114(3), 1-15. Doi: 10.1007/s13398-020-00841-3.
  • [11] F. Ertu¼gral and M. Z. Sarikaya, Simpson type integral inequalities for generalized fractional integral, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113(4), 2019, 3115-3124.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences, Applied Mathematics
Journal Section Articles
Authors

Seda Kılınç Yıldırım

Hüseyin Budak

Hüseyin Yıldırım 0000-0001-8855-9260

Publication Date October 15, 2021
Submission Date March 1, 2021
Acceptance Date September 20, 2021
Published in Issue Year 2021 Volume: 9 Issue: 2

Cite

APA Kılınç Yıldırım, S., Budak, H., & Yıldırım, H. (2021). On Parameterized Simpson, Midpoint and Trapezoid Type Inequalities for Differentiable$\ \left( \eta _{1},\eta _{2}\right) -$Convex Functions via Generalized Fractional Integrals. Konuralp Journal of Mathematics, 9(2), 356-370.
AMA Kılınç Yıldırım S, Budak H, Yıldırım H. On Parameterized Simpson, Midpoint and Trapezoid Type Inequalities for Differentiable$\ \left( \eta _{1},\eta _{2}\right) -$Convex Functions via Generalized Fractional Integrals. Konuralp J. Math. October 2021;9(2):356-370.
Chicago Kılınç Yıldırım, Seda, Hüseyin Budak, and Hüseyin Yıldırım. “On Parameterized Simpson, Midpoint and Trapezoid Type Inequalities for Differentiable$\ \left( \eta _{1},\eta _{2}\right) -$Convex Functions via Generalized Fractional Integrals”. Konuralp Journal of Mathematics 9, no. 2 (October 2021): 356-70.
EndNote Kılınç Yıldırım S, Budak H, Yıldırım H (October 1, 2021) On Parameterized Simpson, Midpoint and Trapezoid Type Inequalities for Differentiable$\ \left( \eta _{1},\eta _{2}\right) -$Convex Functions via Generalized Fractional Integrals. Konuralp Journal of Mathematics 9 2 356–370.
IEEE S. Kılınç Yıldırım, H. Budak, and H. Yıldırım, “On Parameterized Simpson, Midpoint and Trapezoid Type Inequalities for Differentiable$\ \left( \eta _{1},\eta _{2}\right) -$Convex Functions via Generalized Fractional Integrals”, Konuralp J. Math., vol. 9, no. 2, pp. 356–370, 2021.
ISNAD Kılınç Yıldırım, Seda et al. “On Parameterized Simpson, Midpoint and Trapezoid Type Inequalities for Differentiable$\ \left( \eta _{1},\eta _{2}\right) -$Convex Functions via Generalized Fractional Integrals”. Konuralp Journal of Mathematics 9/2 (October 2021), 356-370.
JAMA Kılınç Yıldırım S, Budak H, Yıldırım H. On Parameterized Simpson, Midpoint and Trapezoid Type Inequalities for Differentiable$\ \left( \eta _{1},\eta _{2}\right) -$Convex Functions via Generalized Fractional Integrals. Konuralp J. Math. 2021;9:356–370.
MLA Kılınç Yıldırım, Seda et al. “On Parameterized Simpson, Midpoint and Trapezoid Type Inequalities for Differentiable$\ \left( \eta _{1},\eta _{2}\right) -$Convex Functions via Generalized Fractional Integrals”. Konuralp Journal of Mathematics, vol. 9, no. 2, 2021, pp. 356-70.
Vancouver Kılınç Yıldırım S, Budak H, Yıldırım H. On Parameterized Simpson, Midpoint and Trapezoid Type Inequalities for Differentiable$\ \left( \eta _{1},\eta _{2}\right) -$Convex Functions via Generalized Fractional Integrals. Konuralp J. Math. 2021;9(2):356-70.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.