In this paper, we showed that the set of displacements of generalized space is a group under the composite operation. We obtained this screw axis of displacement in generalized space. Using this screw axis, we obtained Rodrigues equation in terms of spatial displacement in this space. Finally, the components of a dual generalized quaternion and the dual orthogonal matrix were obtained using Euler parameters in generalized space.
[1] O.P. Agrawal, Hamilton Operators and Dual-number-quaternions in Spatial Kinematics, Mech. Mach. Theory, 22(1987), 569-575.
[2] B. Akyar, Dual Quaternions in Spatial Kinematics in an Algebraic Sense, Turk J. Math., 32(2008), 373-391.
[3] S.L. Altmann, Rotations, Quaternions, and Double Groups, Oxford University Press, Oxford, 1986.
[4] E. Ata, Y. Yıldırım, Different Polar Representation for Generalized and Generalized Dual Quaternions, Adv. Appl. Clifford Al., (28)(2010), 193-202.
[5] E. Ata, U¨ .Z. Savci Spherical Kinematics in 3-Dimensional Generalized Space, International Journal of Geometric Methods in Modern Physics,
18(3)(2021), 2150033.
[6] O. Bottema, B. Roth, Theoretical Kinematics, North-Holland Press, New York 1979.
[7] W.K. Clifford, Preliminary sketch of bi-quaternions, Proc. London Math.Soc., 4(1873), 381-395.
[8] J. Cockle, On Systems of Algebra Involving More than One Imaginary, Philos. Mag. (series 3), 35(1849), 434-435.
[9] K. Erdmann, A. Skowronski, Algebras of generalized quaternion type, Advances in Mathematics, 349(2019), 1036-1116.
[10] J.M. Herve, The mathematical group structure of the set of displacements, Mech. Mach. Theory, 29(1994), 73-81.
[11] M. Hiller, C. Woernle, A Unified Representation of Spatial Displacements, Mech. Mach. Theory, 19(1984), 477-486.
[12] M. Jafari, Y. Yaylı, Generalızed Quaternions and Rotation in 3-Space E3a b , TWMS J. Pure Appl. Math., 6(2)(2015), 224-232.
[13] L. Kula, Y. Yaylı, Dual Split Quaternions and Screw Motion in Minkowski $3-$space, Iranian Journal of Science & Technology, Transaction A,
30(2006), 245-258.
[14] A.P. Kotel’nikov, Screw calculus and some of its applications to geometry and mechanies, Annals of The Imperial University of Kazan, 1895.
[15] T.Y. Lam, Introduction to Quadratic Forms Over Fields, American Mathematical Society, USA 2005.
[16] J.M. McCarthy, An Introduction to Theoretical Kinematics, MIT Press, Cambridge, 1990.
[17] M. Ozdemir, A.A. Ergin, Rotations with unit timelike quaternions in Minkowski $3-$space, Journal of Geometry and Physics, 56(2006), 322-336.
[18] S. Ozkaldı, H. G¨undo˘gan, Split Quaternions and Screw Motions in $3-$dimensional Lorentzian Space, Adv. Appl. Clifford Al., 21(2011), 193-202.
[19] H. Pottman, J. Wallner, Computational line geometry, Springer-Verlag Berlin Heidelberg, New York, 2000.
[20] E. Study, Geometrie der Dynamen, Leipzig, Germany, 1903.
Year 2022,
Volume: 10 Issue: 1, 197 - 202, 15.04.2022
[1] O.P. Agrawal, Hamilton Operators and Dual-number-quaternions in Spatial Kinematics, Mech. Mach. Theory, 22(1987), 569-575.
[2] B. Akyar, Dual Quaternions in Spatial Kinematics in an Algebraic Sense, Turk J. Math., 32(2008), 373-391.
[3] S.L. Altmann, Rotations, Quaternions, and Double Groups, Oxford University Press, Oxford, 1986.
[4] E. Ata, Y. Yıldırım, Different Polar Representation for Generalized and Generalized Dual Quaternions, Adv. Appl. Clifford Al., (28)(2010), 193-202.
[5] E. Ata, U¨ .Z. Savci Spherical Kinematics in 3-Dimensional Generalized Space, International Journal of Geometric Methods in Modern Physics,
18(3)(2021), 2150033.
[6] O. Bottema, B. Roth, Theoretical Kinematics, North-Holland Press, New York 1979.
[7] W.K. Clifford, Preliminary sketch of bi-quaternions, Proc. London Math.Soc., 4(1873), 381-395.
[8] J. Cockle, On Systems of Algebra Involving More than One Imaginary, Philos. Mag. (series 3), 35(1849), 434-435.
[9] K. Erdmann, A. Skowronski, Algebras of generalized quaternion type, Advances in Mathematics, 349(2019), 1036-1116.
[10] J.M. Herve, The mathematical group structure of the set of displacements, Mech. Mach. Theory, 29(1994), 73-81.
[11] M. Hiller, C. Woernle, A Unified Representation of Spatial Displacements, Mech. Mach. Theory, 19(1984), 477-486.
[12] M. Jafari, Y. Yaylı, Generalızed Quaternions and Rotation in 3-Space E3a b , TWMS J. Pure Appl. Math., 6(2)(2015), 224-232.
[13] L. Kula, Y. Yaylı, Dual Split Quaternions and Screw Motion in Minkowski $3-$space, Iranian Journal of Science & Technology, Transaction A,
30(2006), 245-258.
[14] A.P. Kotel’nikov, Screw calculus and some of its applications to geometry and mechanies, Annals of The Imperial University of Kazan, 1895.
[15] T.Y. Lam, Introduction to Quadratic Forms Over Fields, American Mathematical Society, USA 2005.
[16] J.M. McCarthy, An Introduction to Theoretical Kinematics, MIT Press, Cambridge, 1990.
[17] M. Ozdemir, A.A. Ergin, Rotations with unit timelike quaternions in Minkowski $3-$space, Journal of Geometry and Physics, 56(2006), 322-336.
[18] S. Ozkaldı, H. G¨undo˘gan, Split Quaternions and Screw Motions in $3-$dimensional Lorentzian Space, Adv. Appl. Clifford Al., 21(2011), 193-202.
[19] H. Pottman, J. Wallner, Computational line geometry, Springer-Verlag Berlin Heidelberg, New York, 2000.
[20] E. Study, Geometrie der Dynamen, Leipzig, Germany, 1903.