Research Article
BibTex RIS Cite
Year 2022, Volume: 10 Issue: 1, 103 - 107, 15.04.2022

Abstract

References

  • [1] Besse, A. L., Einstein manifolds, Springer-Verlag, Berlin, 1987.
  • [2] Cartan, E., Sur une classe remarquable d’espaces de Riemannian, Bull. S.M. F., 54(1926), 214–264. (In France.)
  • [3] Cherevko, Y., Berezovski, V. and Chepurna, O., Conformal mappings of Riemannian manifolds preserving the generalized Einstein tensor, 17th Conference on Applied Mathematics, APLIMAT 2018-Proceedings, (2018), 224-231.
  • [4] Chaki, M. C., On pseudo symmetric manifolds, Analele S¸ t Ale. Univ. Al. I. Cuza Din Ias¸i., 33(1987), 53-58.
  • [5] Chaki, M. C., On pseudo Ricci symmetric manifolds, Bulgar. J. Phys., 15(1988), 526-531.
  • [6] Chaki, M. C. and Kawaguchi, T., On almost pseudo Ricci symmetric manifolds, Tensor N.S., 68(2007), 10-14.
  • [7] Bang-Yen Chen, Rectifying submanifolds of Riemannian manifolds and torqued vector fields, Kragujevac Journal of Mathematics, 41(1) (2017), 93–103.
  • [8] Bang-Yen Chen, Classification of torqued vector fields and its applications to Ricci solutions, Kragujevac Journal of Mathematics, 41(2) (2017), 239–250.
  • [9] De, U. C. and Gazi, A. K., On conformally flat almost pseudo Ricci symmetric manifolds, Kyungpook Math. J., 49(2009), 507-520.
  • [10] De, U. C. and Shaikh, A. A., Differential geometry of manifolds, Alpha Sciences, Oxford, 2009.
  • [11] Deszcz, R. ,On Ricci-pseudosymmetric warped products, Demonstratio Math., 22(1989), 1053-1065.
  • [12] Deszcz, R. ,On pseudosymmetric spaces, Bull. Belg. Math. Soc., Ser. A, 44(1992), 1-34.
  • [13] Hicks, N. J., Notes on differential geometry, Affiliated East-West Press. Pvt. Ltd., 1969.
  • [14] Gray, A. , Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7(1998), 259-280.
  • [15] Petrov, A. Z., New methods in the general theory of relativity, Izdat. “Nauka”, Moscow, 1966.
  • [16] Petrovi´c, M. Z., Stankovi´c, M. S. and Peska, P., On conformal and concircular diffeomorphisms of Eisenhart’s generalized Riemannian spaces, Mathematics, 626(7)(2019), doi:10.3390/math7070626.
  • [17] Roter, W., On Conformally symmetric Ricci-recurrent spaces, Colloq. Math., 31(1974), 87–96.
  • [18] Shaikh, A. A., Deszcz, R., Hotlos, M., Jelowicki, J. and Kundu, H., On pseudo symmetric manifolds, ArXiv: 1405.2181v2[math-DG], 27 June 2015.

A Study on Generalized Einstein Tensor for an Almost Pseudo-Ricci Symmetric Manifold

Year 2022, Volume: 10 Issue: 1, 103 - 107, 15.04.2022

Abstract

The object of the paper is to study the generalized Einstein tensor $G(X,Y)$ on almost pseudo-Ricci symmetric manifolds, $A(PRS)_{n}$. Considering the generalized Einstein tensor $G(X,Y)$ as conservative, cyclic parallel and Codazzi type, it is investigated the properties of such a manifold.

References

  • [1] Besse, A. L., Einstein manifolds, Springer-Verlag, Berlin, 1987.
  • [2] Cartan, E., Sur une classe remarquable d’espaces de Riemannian, Bull. S.M. F., 54(1926), 214–264. (In France.)
  • [3] Cherevko, Y., Berezovski, V. and Chepurna, O., Conformal mappings of Riemannian manifolds preserving the generalized Einstein tensor, 17th Conference on Applied Mathematics, APLIMAT 2018-Proceedings, (2018), 224-231.
  • [4] Chaki, M. C., On pseudo symmetric manifolds, Analele S¸ t Ale. Univ. Al. I. Cuza Din Ias¸i., 33(1987), 53-58.
  • [5] Chaki, M. C., On pseudo Ricci symmetric manifolds, Bulgar. J. Phys., 15(1988), 526-531.
  • [6] Chaki, M. C. and Kawaguchi, T., On almost pseudo Ricci symmetric manifolds, Tensor N.S., 68(2007), 10-14.
  • [7] Bang-Yen Chen, Rectifying submanifolds of Riemannian manifolds and torqued vector fields, Kragujevac Journal of Mathematics, 41(1) (2017), 93–103.
  • [8] Bang-Yen Chen, Classification of torqued vector fields and its applications to Ricci solutions, Kragujevac Journal of Mathematics, 41(2) (2017), 239–250.
  • [9] De, U. C. and Gazi, A. K., On conformally flat almost pseudo Ricci symmetric manifolds, Kyungpook Math. J., 49(2009), 507-520.
  • [10] De, U. C. and Shaikh, A. A., Differential geometry of manifolds, Alpha Sciences, Oxford, 2009.
  • [11] Deszcz, R. ,On Ricci-pseudosymmetric warped products, Demonstratio Math., 22(1989), 1053-1065.
  • [12] Deszcz, R. ,On pseudosymmetric spaces, Bull. Belg. Math. Soc., Ser. A, 44(1992), 1-34.
  • [13] Hicks, N. J., Notes on differential geometry, Affiliated East-West Press. Pvt. Ltd., 1969.
  • [14] Gray, A. , Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7(1998), 259-280.
  • [15] Petrov, A. Z., New methods in the general theory of relativity, Izdat. “Nauka”, Moscow, 1966.
  • [16] Petrovi´c, M. Z., Stankovi´c, M. S. and Peska, P., On conformal and concircular diffeomorphisms of Eisenhart’s generalized Riemannian spaces, Mathematics, 626(7)(2019), doi:10.3390/math7070626.
  • [17] Roter, W., On Conformally symmetric Ricci-recurrent spaces, Colloq. Math., 31(1974), 87–96.
  • [18] Shaikh, A. A., Deszcz, R., Hotlos, M., Jelowicki, J. and Kundu, H., On pseudo symmetric manifolds, ArXiv: 1405.2181v2[math-DG], 27 June 2015.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Hülya Yılmaz

Samiye Aynur Uysal

Publication Date April 15, 2022
Submission Date February 7, 2022
Acceptance Date March 22, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Yılmaz, H., & Uysal, S. A. (2022). A Study on Generalized Einstein Tensor for an Almost Pseudo-Ricci Symmetric Manifold. Konuralp Journal of Mathematics, 10(1), 103-107.
AMA Yılmaz H, Uysal SA. A Study on Generalized Einstein Tensor for an Almost Pseudo-Ricci Symmetric Manifold. Konuralp J. Math. April 2022;10(1):103-107.
Chicago Yılmaz, Hülya, and Samiye Aynur Uysal. “A Study on Generalized Einstein Tensor for an Almost Pseudo-Ricci Symmetric Manifold”. Konuralp Journal of Mathematics 10, no. 1 (April 2022): 103-7.
EndNote Yılmaz H, Uysal SA (April 1, 2022) A Study on Generalized Einstein Tensor for an Almost Pseudo-Ricci Symmetric Manifold. Konuralp Journal of Mathematics 10 1 103–107.
IEEE H. Yılmaz and S. A. Uysal, “A Study on Generalized Einstein Tensor for an Almost Pseudo-Ricci Symmetric Manifold”, Konuralp J. Math., vol. 10, no. 1, pp. 103–107, 2022.
ISNAD Yılmaz, Hülya - Uysal, Samiye Aynur. “A Study on Generalized Einstein Tensor for an Almost Pseudo-Ricci Symmetric Manifold”. Konuralp Journal of Mathematics 10/1 (April 2022), 103-107.
JAMA Yılmaz H, Uysal SA. A Study on Generalized Einstein Tensor for an Almost Pseudo-Ricci Symmetric Manifold. Konuralp J. Math. 2022;10:103–107.
MLA Yılmaz, Hülya and Samiye Aynur Uysal. “A Study on Generalized Einstein Tensor for an Almost Pseudo-Ricci Symmetric Manifold”. Konuralp Journal of Mathematics, vol. 10, no. 1, 2022, pp. 103-7.
Vancouver Yılmaz H, Uysal SA. A Study on Generalized Einstein Tensor for an Almost Pseudo-Ricci Symmetric Manifold. Konuralp J. Math. 2022;10(1):103-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.