Year 2022,
Volume: 10 Issue: 1, 188 - 196, 15.04.2022
Seyyed Hossein Jafari Petroudi
,
Maryam Pirouz
,
Mücahit Akbıyık
,
Fatih Yılmaz
References
- [1] M. Akbulak, A. Ipek, Hadamard exponential Hankel Matrix, its eigenvalues and some norms, Math. sci. Lett, 1 (2012), 81-87.
- [2] R. Reams, Hadamard inverses, square roots and products of almost semidefinite matrices, Linear Algebra and its Applications, 288 (1999), 35-43.
- [3] M. Bahsi, S. Solak, on the matrices with Harmonic numbers, GU. J. Sc, 23(4) (2010), 445-448.
- [4] M. Bahsi, on the norms of r−circulant matrices wit the hyper Harmonic numbers, Journal of mathematical inequalities, 10(2) (2016), 445-458.
- [5] M. Istvan, D. Ayhan, Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence Cent. Eur. J. Math, 10(2)
(2009), 1-12.
- [6] D.Bozkurt, A note on the spectral norms of the matrices connected integer numbers sequence, Math.GM,. 1724v1 (2011), 171-190.
- [7] H. Civciv, R. Turkmen, On the bounds for the spectral and ℓp norms of the Khatri-Rao products of Cauchy-Hankel matrices . Jipam Vol.7 Article 195
(2006), 365-380.
- [8] E. Dupree, B.Mathes, Singular values of k-Fibonacci and k-Lucas Hankel matrix, Int. J. Contemp. Math. Science. Vol 7 (2012), no. 47, 2327–2339.
- [9] A. D. Godase, M. B. Dhakne, On the properties of generalized multiplicative coupled Fibonacci sequence of r-th order, Int. J. Adv. Appl. Math. andMech.
2(3) (2015), 252 - 257.
- [10] A. D. Godase, M. B. Dhakne, On the properties of generalized Fibonacci like polynomials, Int. J. Adv. Appl. Math. and Mech. 2(3) (2015) 234 - 251.
- [11] A. D. Godase, M. B. Dhakne, On the properties of k-Fibonacci and k-Lucas numbers, Int. J. Adv. Appl. Math. andMech. 2(1) (2014), 100 - 106.
- [12] S.H.J. Petroudi, B. Pirouz, On some properties of (k,h)-Pell sequence and (k,h)-Pell-Lucas sequence, Int. J.Adv. Appl. Math. and Mech. 3(1) (2015)
98-101.
- [13] S.H.J. Petroudi, B. Pirouz, A particular matrix, Its inversion and some norms, Appl. and Computational Math. 4(2) (2015), 47-52.
- [14] A. Nalli, M.Sen, On the norms of circulant matrices with generalized Fibonacci numbers, Selc¸uk J. Appl. Math, Vol.11, No.1 (2010), 107-116.
- [15] S. Solak, Bahsi. M, A particular matrix and its some properties, Scientific Research and Essays, Vol.8(1), (2013), 1-5.
- [16] S. Solak, M. Bahsi, On the spectral norms of Toeplitz matrices with Fibonacci and Lucas numbers, Nonlinear Analysis, Hacettepe Journal of Mathematics
and Statistics. 42,(2013), no. 1, 15-19.
- [17] N. Tuglu, C. Kizilates, S. Kesim , On the harmonic and hyperharmonic Fibonacci numbers , Advances in Difference Equations, (2015), 1-12.
- [18] F.Zhang, Matrix Theory, Basic results and techniques, Springer, 2011.
- [19] S.H.J. Petroudi, M. Pirouz, Toward Special Symmetric Matrices with Harmonic Numbers, 8th National Conference on Mathematics of Payame Noor
University, 2016.
- [20] S. Yamac¸ Akbıyık, M. Akbıyık, F. Yılmaz, One Type of Symmetric Matrix with Harmonic Pell Entries, Its Inversion, Permanents and Some Norms.
Mathematics 9(2021), 539.
- [21] A. Dagdeviren, F. Kuruz, Special Real and Dual Matrices with Hadamard Product, Journal of Engineering Technology and Applied Sciences, 6(2)
(2021), 127-134.
Some Special Matrices with Harmonic Numbers
Year 2022,
Volume: 10 Issue: 1, 188 - 196, 15.04.2022
Seyyed Hossein Jafari Petroudi
,
Maryam Pirouz
,
Mücahit Akbıyık
,
Fatih Yılmaz
Abstract
In this paper, we define a particular $n\times n$ matrix $H=[H_{k_{i,j}}]_{i,j=1}^{n}$ and its Hadamard exponential matrix $e^{\circ H}=[e^{H_{k_{i,j}}}]$, where $k_{i,j}=min(i,j)$ and $H_n$ is the $n^{th}$ harmonic number. Determinants and inverses of these matrices are investigated. Moreover, the Euclidean norm and two upper bounds and lower bounds for the spectral norm of these matrices are presented. Finally, we derive some identities about principal minors of these matrices.
References
- [1] M. Akbulak, A. Ipek, Hadamard exponential Hankel Matrix, its eigenvalues and some norms, Math. sci. Lett, 1 (2012), 81-87.
- [2] R. Reams, Hadamard inverses, square roots and products of almost semidefinite matrices, Linear Algebra and its Applications, 288 (1999), 35-43.
- [3] M. Bahsi, S. Solak, on the matrices with Harmonic numbers, GU. J. Sc, 23(4) (2010), 445-448.
- [4] M. Bahsi, on the norms of r−circulant matrices wit the hyper Harmonic numbers, Journal of mathematical inequalities, 10(2) (2016), 445-458.
- [5] M. Istvan, D. Ayhan, Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence Cent. Eur. J. Math, 10(2)
(2009), 1-12.
- [6] D.Bozkurt, A note on the spectral norms of the matrices connected integer numbers sequence, Math.GM,. 1724v1 (2011), 171-190.
- [7] H. Civciv, R. Turkmen, On the bounds for the spectral and ℓp norms of the Khatri-Rao products of Cauchy-Hankel matrices . Jipam Vol.7 Article 195
(2006), 365-380.
- [8] E. Dupree, B.Mathes, Singular values of k-Fibonacci and k-Lucas Hankel matrix, Int. J. Contemp. Math. Science. Vol 7 (2012), no. 47, 2327–2339.
- [9] A. D. Godase, M. B. Dhakne, On the properties of generalized multiplicative coupled Fibonacci sequence of r-th order, Int. J. Adv. Appl. Math. andMech.
2(3) (2015), 252 - 257.
- [10] A. D. Godase, M. B. Dhakne, On the properties of generalized Fibonacci like polynomials, Int. J. Adv. Appl. Math. and Mech. 2(3) (2015) 234 - 251.
- [11] A. D. Godase, M. B. Dhakne, On the properties of k-Fibonacci and k-Lucas numbers, Int. J. Adv. Appl. Math. andMech. 2(1) (2014), 100 - 106.
- [12] S.H.J. Petroudi, B. Pirouz, On some properties of (k,h)-Pell sequence and (k,h)-Pell-Lucas sequence, Int. J.Adv. Appl. Math. and Mech. 3(1) (2015)
98-101.
- [13] S.H.J. Petroudi, B. Pirouz, A particular matrix, Its inversion and some norms, Appl. and Computational Math. 4(2) (2015), 47-52.
- [14] A. Nalli, M.Sen, On the norms of circulant matrices with generalized Fibonacci numbers, Selc¸uk J. Appl. Math, Vol.11, No.1 (2010), 107-116.
- [15] S. Solak, Bahsi. M, A particular matrix and its some properties, Scientific Research and Essays, Vol.8(1), (2013), 1-5.
- [16] S. Solak, M. Bahsi, On the spectral norms of Toeplitz matrices with Fibonacci and Lucas numbers, Nonlinear Analysis, Hacettepe Journal of Mathematics
and Statistics. 42,(2013), no. 1, 15-19.
- [17] N. Tuglu, C. Kizilates, S. Kesim , On the harmonic and hyperharmonic Fibonacci numbers , Advances in Difference Equations, (2015), 1-12.
- [18] F.Zhang, Matrix Theory, Basic results and techniques, Springer, 2011.
- [19] S.H.J. Petroudi, M. Pirouz, Toward Special Symmetric Matrices with Harmonic Numbers, 8th National Conference on Mathematics of Payame Noor
University, 2016.
- [20] S. Yamac¸ Akbıyık, M. Akbıyık, F. Yılmaz, One Type of Symmetric Matrix with Harmonic Pell Entries, Its Inversion, Permanents and Some Norms.
Mathematics 9(2021), 539.
- [21] A. Dagdeviren, F. Kuruz, Special Real and Dual Matrices with Hadamard Product, Journal of Engineering Technology and Applied Sciences, 6(2)
(2021), 127-134.