Semi-Symmetric Generalized Sasakian Space Forms On Some Special Curvature Tensors
Year 2022,
Volume: 10 Issue: 2, 240 - 249, 31.10.2022
Tuğba Mert
,
Mehmet Atçeken
,
Pakize Uygun
Abstract
In this article, semi-symmetric generalized Sasakian space forms are investigated on some special curvature tensors. Characterizations of generalized Sasakian space forms are obtained on some specially selected $\sigma-$curvature tensors. By examining the flatness of these $\sigma -$curvature tensors, the properties of generalized sasakian space forms are given. More importantly, the cases of $\sigma-$semi-symmetric generalized Sasakian space forms are discussed and the behavior of the manifold is examined for each case. Again, necessary and sufficient conditions have been obtained for $\sigma-$symmetric generalized Sasakian space forms to be Einstein manifolds.
References
- [1] Alegre P., Blair D.E and Carriazo A., Generalized Sasakian space form. Israel journal of Mathematics, 141 (2004), 157-183.
- [2] De U.C. and Sarkar A., On the projective curvature tensor of generalized Sasakian space forms, Quaestines Mathematicae, 33 (2010), 245-252.
- [3] Sarkar A. and De U.C., Some curvature properties of generalized Sasakian space forms, Lobachevskii journal of mathematics, 33 (2012), no.1, 22-27.
- [4] O¨ zgu¨r C. and Tripathi N.M., On P-Sasakian manifolds satisfying certain conditions on concircular curvature tensor, Turk. J. Math., 31 (2007), 171-179.
- [5] Atc¸eken M., On generalized Sasakian space forms satisfying certain conditions on the concircular curvature tensor, Bulletin of Math. Analysis and
Applications, vol.6, 1 (2014), 1-8.
- [6] Sreenivasa G.T., Venkatesha and Bagewadi C.S., Some Results on (LCS)2n+1Manifolds, Bulletin of mathematical analysis and applications, vol.1, 3
(2009).
- [7] Alegre P. and Cariazo A., Structures on generalized Sasakian-space-form, Differential Geom. and its application 26 (2008), 656–666.
- [8] Belkhelfa M., Deszcz R. and Verstraelen L., Symmetry properties of Sasakianspace-forms, Soochow Journal of Mathematics 31 (2005), 611–616.
- [9] Kim U.K., Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note di matemetica 26 (2006),
55–67.
- [10] M. Tripathi, P. Gupta, tCurvature Tensor on A Semi-Riemannian Manifold, J. Adv. Math. Studies, 4 (2011), 117-129.
- [11] M. Atc¸eken and P. Uygun, Characterizations for totally geodesic submanifolds of (k;m)paracontact metric manifolds, Korean J. Math. 28(2020),
555-571.
- [12] T. Mert, Characterization of some special curvature tensor on Almost C(a)manifold, Asian Journal of Math. and Computer Research, 29 (1)(2022),
27-41.
- [13] T. Mert and M. Atc¸eken, Almost C(a)manifold onW
0 -curvature tensor, Applied Mathematical Sciences, 15 (15) (2021), 693-703.
- [14] M. Atc¸eken, Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds, Korean J. Math., 30 (1) (2022), 175-185.
- [15] M. Atc¸eken, T. Mert, Characterizations for totally geodesic submanifolds of a Kparacontact manifold, AIMS Math., 6 (7) (2021), 7320-7332.
- [16] T. Mert, M. Atc¸eken, Almost C(a)manifoldon Mprojectively curvature tensor, New Trends in Mathematical Sciences, 10 (3) (2022), 1-8.
- [17] P. Uygun, S.Dirik, M, Atc¸eken and T.Mert, Some Characterizations Invariant Submanifolds of A (k;m)Para Contact Space, Journal of Engineering
Research and Applied Science, 11 (1) (2022), 1967-1972.
Year 2022,
Volume: 10 Issue: 2, 240 - 249, 31.10.2022
Tuğba Mert
,
Mehmet Atçeken
,
Pakize Uygun
References
- [1] Alegre P., Blair D.E and Carriazo A., Generalized Sasakian space form. Israel journal of Mathematics, 141 (2004), 157-183.
- [2] De U.C. and Sarkar A., On the projective curvature tensor of generalized Sasakian space forms, Quaestines Mathematicae, 33 (2010), 245-252.
- [3] Sarkar A. and De U.C., Some curvature properties of generalized Sasakian space forms, Lobachevskii journal of mathematics, 33 (2012), no.1, 22-27.
- [4] O¨ zgu¨r C. and Tripathi N.M., On P-Sasakian manifolds satisfying certain conditions on concircular curvature tensor, Turk. J. Math., 31 (2007), 171-179.
- [5] Atc¸eken M., On generalized Sasakian space forms satisfying certain conditions on the concircular curvature tensor, Bulletin of Math. Analysis and
Applications, vol.6, 1 (2014), 1-8.
- [6] Sreenivasa G.T., Venkatesha and Bagewadi C.S., Some Results on (LCS)2n+1Manifolds, Bulletin of mathematical analysis and applications, vol.1, 3
(2009).
- [7] Alegre P. and Cariazo A., Structures on generalized Sasakian-space-form, Differential Geom. and its application 26 (2008), 656–666.
- [8] Belkhelfa M., Deszcz R. and Verstraelen L., Symmetry properties of Sasakianspace-forms, Soochow Journal of Mathematics 31 (2005), 611–616.
- [9] Kim U.K., Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note di matemetica 26 (2006),
55–67.
- [10] M. Tripathi, P. Gupta, tCurvature Tensor on A Semi-Riemannian Manifold, J. Adv. Math. Studies, 4 (2011), 117-129.
- [11] M. Atc¸eken and P. Uygun, Characterizations for totally geodesic submanifolds of (k;m)paracontact metric manifolds, Korean J. Math. 28(2020),
555-571.
- [12] T. Mert, Characterization of some special curvature tensor on Almost C(a)manifold, Asian Journal of Math. and Computer Research, 29 (1)(2022),
27-41.
- [13] T. Mert and M. Atc¸eken, Almost C(a)manifold onW
0 -curvature tensor, Applied Mathematical Sciences, 15 (15) (2021), 693-703.
- [14] M. Atc¸eken, Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds, Korean J. Math., 30 (1) (2022), 175-185.
- [15] M. Atc¸eken, T. Mert, Characterizations for totally geodesic submanifolds of a Kparacontact manifold, AIMS Math., 6 (7) (2021), 7320-7332.
- [16] T. Mert, M. Atc¸eken, Almost C(a)manifoldon Mprojectively curvature tensor, New Trends in Mathematical Sciences, 10 (3) (2022), 1-8.
- [17] P. Uygun, S.Dirik, M, Atc¸eken and T.Mert, Some Characterizations Invariant Submanifolds of A (k;m)Para Contact Space, Journal of Engineering
Research and Applied Science, 11 (1) (2022), 1967-1972.