Extreme-Fixed Points of the Vandermonde Polynomial when Optimized over p-Normed Surfaces Defined by Univariate Polynomials
Year 2022,
Volume: 10 Issue: 2, 355 - 367, 31.10.2022
Asaph Keikara Muhumuza
,
Rebecca Nalule Muhumuza
,
Santosh Kumar
Abstract
The concept of the extreme-fixed point is coined from the facts of zeros of polynomials, extreme/optimal points on optimization of a given function and fixed points of a given continuous function. In this article, we establish the close relations between zeros, extreme, fixed points, and also what we define as extreme-fixed points. We illustrate this result with the Vandermonde polynomial (or determinant) when optimized over a given p-norm surface expressed by univariate polynomial(s). It is further, established that indeed the coordinates of the extreme-fixed points on such a surface like a p-sphere are given as roots of some classical orthogonal polynomials.
Supporting Institution
None
References
- [1] Abramowitz Milton, Stegun Irene, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1964.
- [2] Agarwal P. Ravi, Meehan Maria, O’Regan Donal, Fixed Point Theory. Cambridge University Press, Cambridge, UK., New York, USA, 2001.
- [3] Bohnenblust H.F., and Karlin S. On a theorem of Ville, in, Contibufrons to the Theory of Games, Ann. of Math. Studies, Princeton University Press, Vol-24, pp. 155-160, 1950.
- [4] Brouwer L. E. J., Über Abbildung von Mannigfaltigkeiten. Math. Ann., 7l, 97 – 1l5, 1912.
- [5] Brouwer L. E. J., An intuitionist’s correction of the fixed-point theorem on the sphere. Proc. Roy. Soc. London, A2l3, l–2, 1952.
- [6] Cohn Henry, A conceptual breakthrough in sphere packing. Notices American Mathematical Society, 64(2), 102–15, 2017.
- [7] Coulomb Charles-Augustin, Premier mémoire sur l’électricité et le magnétisme. Histoire de l’Académie royale des sciences avec les mémoires de mathématiques et de physique pour la même année tirés des registres de cette académie. Annáe MDCCLXXXV, 569– 577, 1785.
- [8] Davis Philip J., Interpolation and Approximation. Blaisdell, New York, 1963.
- [9] Dette Holger, Trampisch Matthias, A general approach to D-optimal designs for weighted univariate polynomial regression models. Journal of the Korean Statistical Society, 39, 1–26, 2010.
- [10] Dimitar K. Dimitrov and Boris Shapiro, Degenerate Lamé Equations and Electrostatic Problems with a Polynomial Constraint. preprint,
http://staff.math.su.se/shapiro/Articles/Electrostatics.pdf.
- [11] Dugundji J., Granas A., Fixed Point Theory. PWN-Polish Scientific Publishing, Warszawa, 1982.
- [12] Forrester Peter J., Log-Gases and Random Matrices. Princeton University Press, 2010.
- [13] Granas Andrzej, Dugundji James, Fixed Point Theory. Springer, 2003.
- [14] Jack C. Kiefer, Optimum Experimental Designs. Journal of the Royal Statistical Society. Series B (Methodological), 21, 2, 272–319, 1959.
- [15] Kreyszig Erwin, Introductory functional analysis with applications. Wiley, New York, 1978.
- [16] Lundengård Karl, Extreme points of the Vandermonde determinant and phenomenological modelling with power exponential functions. (Doctoral dissertation, Mälardalen University , 2019.
- [17] Lundengård Karl, Österberg Jonas, Silvestrov Sergei, Extreme points of the Vandermonde determinant on the sphere and some limits involving the generalized Vandermonde determinant. arXiv, eprint arXiv:1312.6193.
- [18] Lundengård Karl, Rancic Milica R., Javor Vesna., Silvestrov Sergei, On some properties of multi-peaked analytically extended function for approximation of lightning discharge currents. Chapter 10 in Engineering Mathematics I: Electrostatics, Fluid Mechanics, Material Physics and Financial Engineering, Volume 178 of Springer Proceedings in Mathematics & Statistics, 151–176, 2016.
- [19] Lundengård Karl, Österberg Jonas, Silvestrov Sergei, Optimization of the determinant of the Vandermonde matrix and related matrices. AIP Conference Proceedings 1637, 627, 2014.
- [20] Mehta Madan Lal, Random Matrices and the Statistical Theory of Energy Levels, Academic Press, New York, London. 1967.
- [21] Muhumuza Asaph K., Silvestrov Sergei, Symmetric Group Properties of Extreme Points of Vandermonde Determinant and Schur polynomials. Accepted for publication in: Sergei Silvestrov, Anatoliy Malyalenko, Milica Ranˇci´c M., (Eds.), Algebraic Structures and Applications. SPAS 2019. Springer Proceedings in Mathematics & Statistics, 2020.
- [22] Muhumuza Asaph Keikara, Extreme points of the vandermonde determinant in numerical approximation, random matrix theory and financial mathematics, ISBN: 978-91-7485-484-8, 2020.
- [23] Muhumuza Asaph K., Lundengård Karl, Silvestrov Sergei, Mango John M., Kakuba Godwin, Connections Between the Extreme Points of Vandermonde determinants and minimizing risk measure in financial mathematics. Accepted for publication in: Silvestrov S., Malyalenko A., Ranˇci´c M., (Eds.), (Eds.), SPAS2019. Algebraic, stochastic and analysis structures for networks, data classification and optimization, Springer Proceedings in Mathematics and Statistics, Springer International Publishing, 2020.
- [24] Muhumuza Asaph K., Lundengård Karl, Silvestrov Sergei, Mango John M., Kakuba Godwin, Wishart Distribution on Symmetric Cones. Accepted for publication in: Silvestrov S., Malyalenko A., Ranˇci´c M., (Eds.), SPAS2019. Algebraic Structures and Applications. SPAS 2019. Springer Proceedings in Mathematics & Statistics, 2020.
- [25] Muhumuza Asaph K., Lundengård Karl, Österberg Jonas, Silvestrov Sergei, Mango John M., Kakuba Godwin, Extreme Points of the Vandermonde Determinant and Wishart Ensembles on Symmetric Cones. Accepted for publication in: Silvestrov S., Malyalenko A.,Ranˇci´c M., (Eds.), Springer International Publishing, 2019.
- [26] Muhumuza Asaph K., Lundengård Karl, Silvestrov Sergei, Mango John M., Kakuba Godwin, Properties of the extreme points of the joint eigenvalue probability density function of the random Wishart matrix, In ASMDA2019, 18th Applied Stochastic Models and Data Analysis International Conference, ISAST: International Society for the Advancement of Science and Technology, 559-571, 2019.
- [27] Muhumuza Asaph K., Lundengård Karl, Österberg Jonas, Silvestrov Sergei, Mango John M., Kakuba Godwin, The Generalized Vandermonde Interpolation Polynomial Based on Divided Differences, SMTDA2018 Conference Proceedings, ISAST2018, 443–456, 2018.
- [28] Muhumuza Asaph K., Lundengård Karl, Österberg Jonas, Silvestrov Sergei, Mango John M., Kakuba Godwin, Extreme points of the Vandermonde determinant on surfaces implicitly determined by a univariate polynomial. In: Silvestrov S., Malyalenko A., Ranˇci´c M., (Eds.), Algebraic Structures and Applications. SPAS 2017. Springer Proceedings in Mathematics & Statistics, vol 317. Springer, Cham. 19 June 2020.
- [29] Muhumuza Asaph K., Lundengård Karl, Silvestrov Sergei, Mango John M., Kakuba Godwin, Optimization of theWishart Joint Eigenvalue Probability Density Distribution Based on the Vandermonde Determinant. In: Silvestrov S., Malyalenko A., Ranˇci´c M., (Eds.), Algebraic Structures and Applications. SPAS 2017. Springer Proceedings in Mathematics & Statistics, vol 317. Springer, Cham. 19 June 2020.
- [30] Muhumuza Asaph K., Lundengård Karl, Silvestrov Sergei, Mango John M., Kakuba Godwin, Lie symmetries of the Black-Scholes type equations in financial mathematics, ASMDA2017 Conference Proceedings, ISAST2017, 723–740, 2017.
- [31] Muir Thomas [1933], A treatise on the theory of determinants, Revised and enlarged by William H. Metzler, New York, NY: Dover, 1960.
- [32] Rack Heinz–Joachim, An example of optimal nodes for interpolation revisited, In: Advances in Applied Mathematics and Approximation Theory. Springer Proc. Math. Stat., Springer, New York, 41, 117–120, 2013.
- [33] Robert Vein, Paul Dale, Determinants and Their Applications in Mathematical Physics, Applied Mathematical Sciences, 134, Springer, New York, 1999.
- [34] Schumaker Larry L., Spline Functions: Basic Theory, Cambridge University Press, 3rd edition, 2007.
- [35] Sergei Silvestrov, Malyarenko Anatoliy, Ranˇci´c Milica, Algebraic Structures and Applications, Springer Science and Business Media LLC, 2020.
- [36] Smart David Roger, Fixed Point Theorems, Cambridge University Press, Cambridge, 1974.
- [37] Szabados József, Vértesi Péter, Interpolation of Functions, World Scientific, Teaneck, 1990.
- [38] Szeg˝o Gábor, Orthogonal Polynomials, Colloquium Publications, XXIII, American Mathematical Society, 1939.
- [39] Taylor Mark A., Wingate Beth A., Rachel Vincent E., An Algorithm for Computing Fekete Points in the Triangle, SIAM Journal of Numerical Analysis 38(5), 1707–1720, 2000.
Year 2022,
Volume: 10 Issue: 2, 355 - 367, 31.10.2022
Asaph Keikara Muhumuza
,
Rebecca Nalule Muhumuza
,
Santosh Kumar
References
- [1] Abramowitz Milton, Stegun Irene, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1964.
- [2] Agarwal P. Ravi, Meehan Maria, O’Regan Donal, Fixed Point Theory. Cambridge University Press, Cambridge, UK., New York, USA, 2001.
- [3] Bohnenblust H.F., and Karlin S. On a theorem of Ville, in, Contibufrons to the Theory of Games, Ann. of Math. Studies, Princeton University Press, Vol-24, pp. 155-160, 1950.
- [4] Brouwer L. E. J., Über Abbildung von Mannigfaltigkeiten. Math. Ann., 7l, 97 – 1l5, 1912.
- [5] Brouwer L. E. J., An intuitionist’s correction of the fixed-point theorem on the sphere. Proc. Roy. Soc. London, A2l3, l–2, 1952.
- [6] Cohn Henry, A conceptual breakthrough in sphere packing. Notices American Mathematical Society, 64(2), 102–15, 2017.
- [7] Coulomb Charles-Augustin, Premier mémoire sur l’électricité et le magnétisme. Histoire de l’Académie royale des sciences avec les mémoires de mathématiques et de physique pour la même année tirés des registres de cette académie. Annáe MDCCLXXXV, 569– 577, 1785.
- [8] Davis Philip J., Interpolation and Approximation. Blaisdell, New York, 1963.
- [9] Dette Holger, Trampisch Matthias, A general approach to D-optimal designs for weighted univariate polynomial regression models. Journal of the Korean Statistical Society, 39, 1–26, 2010.
- [10] Dimitar K. Dimitrov and Boris Shapiro, Degenerate Lamé Equations and Electrostatic Problems with a Polynomial Constraint. preprint,
http://staff.math.su.se/shapiro/Articles/Electrostatics.pdf.
- [11] Dugundji J., Granas A., Fixed Point Theory. PWN-Polish Scientific Publishing, Warszawa, 1982.
- [12] Forrester Peter J., Log-Gases and Random Matrices. Princeton University Press, 2010.
- [13] Granas Andrzej, Dugundji James, Fixed Point Theory. Springer, 2003.
- [14] Jack C. Kiefer, Optimum Experimental Designs. Journal of the Royal Statistical Society. Series B (Methodological), 21, 2, 272–319, 1959.
- [15] Kreyszig Erwin, Introductory functional analysis with applications. Wiley, New York, 1978.
- [16] Lundengård Karl, Extreme points of the Vandermonde determinant and phenomenological modelling with power exponential functions. (Doctoral dissertation, Mälardalen University , 2019.
- [17] Lundengård Karl, Österberg Jonas, Silvestrov Sergei, Extreme points of the Vandermonde determinant on the sphere and some limits involving the generalized Vandermonde determinant. arXiv, eprint arXiv:1312.6193.
- [18] Lundengård Karl, Rancic Milica R., Javor Vesna., Silvestrov Sergei, On some properties of multi-peaked analytically extended function for approximation of lightning discharge currents. Chapter 10 in Engineering Mathematics I: Electrostatics, Fluid Mechanics, Material Physics and Financial Engineering, Volume 178 of Springer Proceedings in Mathematics & Statistics, 151–176, 2016.
- [19] Lundengård Karl, Österberg Jonas, Silvestrov Sergei, Optimization of the determinant of the Vandermonde matrix and related matrices. AIP Conference Proceedings 1637, 627, 2014.
- [20] Mehta Madan Lal, Random Matrices and the Statistical Theory of Energy Levels, Academic Press, New York, London. 1967.
- [21] Muhumuza Asaph K., Silvestrov Sergei, Symmetric Group Properties of Extreme Points of Vandermonde Determinant and Schur polynomials. Accepted for publication in: Sergei Silvestrov, Anatoliy Malyalenko, Milica Ranˇci´c M., (Eds.), Algebraic Structures and Applications. SPAS 2019. Springer Proceedings in Mathematics & Statistics, 2020.
- [22] Muhumuza Asaph Keikara, Extreme points of the vandermonde determinant in numerical approximation, random matrix theory and financial mathematics, ISBN: 978-91-7485-484-8, 2020.
- [23] Muhumuza Asaph K., Lundengård Karl, Silvestrov Sergei, Mango John M., Kakuba Godwin, Connections Between the Extreme Points of Vandermonde determinants and minimizing risk measure in financial mathematics. Accepted for publication in: Silvestrov S., Malyalenko A., Ranˇci´c M., (Eds.), (Eds.), SPAS2019. Algebraic, stochastic and analysis structures for networks, data classification and optimization, Springer Proceedings in Mathematics and Statistics, Springer International Publishing, 2020.
- [24] Muhumuza Asaph K., Lundengård Karl, Silvestrov Sergei, Mango John M., Kakuba Godwin, Wishart Distribution on Symmetric Cones. Accepted for publication in: Silvestrov S., Malyalenko A., Ranˇci´c M., (Eds.), SPAS2019. Algebraic Structures and Applications. SPAS 2019. Springer Proceedings in Mathematics & Statistics, 2020.
- [25] Muhumuza Asaph K., Lundengård Karl, Österberg Jonas, Silvestrov Sergei, Mango John M., Kakuba Godwin, Extreme Points of the Vandermonde Determinant and Wishart Ensembles on Symmetric Cones. Accepted for publication in: Silvestrov S., Malyalenko A.,Ranˇci´c M., (Eds.), Springer International Publishing, 2019.
- [26] Muhumuza Asaph K., Lundengård Karl, Silvestrov Sergei, Mango John M., Kakuba Godwin, Properties of the extreme points of the joint eigenvalue probability density function of the random Wishart matrix, In ASMDA2019, 18th Applied Stochastic Models and Data Analysis International Conference, ISAST: International Society for the Advancement of Science and Technology, 559-571, 2019.
- [27] Muhumuza Asaph K., Lundengård Karl, Österberg Jonas, Silvestrov Sergei, Mango John M., Kakuba Godwin, The Generalized Vandermonde Interpolation Polynomial Based on Divided Differences, SMTDA2018 Conference Proceedings, ISAST2018, 443–456, 2018.
- [28] Muhumuza Asaph K., Lundengård Karl, Österberg Jonas, Silvestrov Sergei, Mango John M., Kakuba Godwin, Extreme points of the Vandermonde determinant on surfaces implicitly determined by a univariate polynomial. In: Silvestrov S., Malyalenko A., Ranˇci´c M., (Eds.), Algebraic Structures and Applications. SPAS 2017. Springer Proceedings in Mathematics & Statistics, vol 317. Springer, Cham. 19 June 2020.
- [29] Muhumuza Asaph K., Lundengård Karl, Silvestrov Sergei, Mango John M., Kakuba Godwin, Optimization of theWishart Joint Eigenvalue Probability Density Distribution Based on the Vandermonde Determinant. In: Silvestrov S., Malyalenko A., Ranˇci´c M., (Eds.), Algebraic Structures and Applications. SPAS 2017. Springer Proceedings in Mathematics & Statistics, vol 317. Springer, Cham. 19 June 2020.
- [30] Muhumuza Asaph K., Lundengård Karl, Silvestrov Sergei, Mango John M., Kakuba Godwin, Lie symmetries of the Black-Scholes type equations in financial mathematics, ASMDA2017 Conference Proceedings, ISAST2017, 723–740, 2017.
- [31] Muir Thomas [1933], A treatise on the theory of determinants, Revised and enlarged by William H. Metzler, New York, NY: Dover, 1960.
- [32] Rack Heinz–Joachim, An example of optimal nodes for interpolation revisited, In: Advances in Applied Mathematics and Approximation Theory. Springer Proc. Math. Stat., Springer, New York, 41, 117–120, 2013.
- [33] Robert Vein, Paul Dale, Determinants and Their Applications in Mathematical Physics, Applied Mathematical Sciences, 134, Springer, New York, 1999.
- [34] Schumaker Larry L., Spline Functions: Basic Theory, Cambridge University Press, 3rd edition, 2007.
- [35] Sergei Silvestrov, Malyarenko Anatoliy, Ranˇci´c Milica, Algebraic Structures and Applications, Springer Science and Business Media LLC, 2020.
- [36] Smart David Roger, Fixed Point Theorems, Cambridge University Press, Cambridge, 1974.
- [37] Szabados József, Vértesi Péter, Interpolation of Functions, World Scientific, Teaneck, 1990.
- [38] Szeg˝o Gábor, Orthogonal Polynomials, Colloquium Publications, XXIII, American Mathematical Society, 1939.
- [39] Taylor Mark A., Wingate Beth A., Rachel Vincent E., An Algorithm for Computing Fekete Points in the Triangle, SIAM Journal of Numerical Analysis 38(5), 1707–1720, 2000.