Year 2023,
Volume: 11 Issue: 2, 184 - 194, 31.10.2023
Seyit Temir
,
Zeynep Bayram
References
- [1] J.Ali, F. Ali, F. P.Kumar, Approximation of Fixed Points for Suzuki’s Generalized Non-Expansive Mappings, Mathematics 7(6), 522 (2019), 1-11.
- [2] D. Ariza-Ruiz, C. Hernandez Linares, E. Llorens-Fuster and E. Moreno-Galvez, On anonexpansive mappings in Banach spaces, Carpathian J. Math.
32 (2016), 13-28.
- [3] K. Aoyama and F. Kohsaka, Fixed point theorem for anonexpansive mappings in Banach spaces, Nonlinear Analy. 74 (13) (2011), 4378-4391.
- [4] A. Ekinci and S. Temir, Convergence theorems for Suzuki generalized nonexpansive mapping in Banach spaces, Tamkang Journal of Mathematics 54 (1)
(2023), 57-67.
- [5] J. Garcia-Falset, E. Llorens-Fuster, T. Suzuki, Fixed Point Theory for A Class of Generalized Nonexpansive Mappings, Journal of Mathematical Analysis
and Applications 375(1), (2011), 185-195.
- [6] G. Maniu, On a three-step iteration process for Suzuki mappings with qualitative study, Numerical Functional Analysis and Optimization, 41:8 (2020),
929-949.
- [7] E. Naraghirad, N.-C. Wong and J.-C. Yao, Approximating fixed points of anonexpansive mappings in uniformly convex Banach spaces and CAT(0)
spaces, Fixed Point Theory and Applications 2013/1/57, (2013), 20 pages.
- [8] M.A. Noor, New approximation schemes for general variational inequalities, Journal of Mathematical Analysis and Applications, 251 (2000), 217-229.
- [9] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull. Ame. Math.Soc. 73 (1967), 591-597.
- [10] R. Pandey, R. Pant, W. Rakocevic, R. Shukla, Approximating Fixed Points of A General Class of Nonexpansive Mappings in Banach Spaces with
Applications, Results in Mathematics, 74(7) (2019), 24 pages.
- [11] R. Pant and R. Shukla, Approximating fixed points of generalized a-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim. 38(2)
(2017), 248-266.
- [12] R. Pant and R. Shukla, Fixed point theorems for a new class of nonexpansive mappings, Appl. Gen. Topol. 23(2) (2022), 377-390.
- [13] H. Piri, B. Daraby, S. Rahrovi, M. Ghasemi, Approximating fixed points of generalized ?-nonexpansive mappings in Banach spaces by new faster
iteration process, Numerical Algorithms 81 (2019),1129–1148, DOI:10.1007/s11075-018-0588-x.
- [14] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, Journal of Mathematical Analysis and
Applications, 340(2) (2008), 1088-1095.
- [15] S. Temir, Weak and strong convergence theorems for three Suzuki’s generalized nonexpansive mappings, Publications de l’Institut Mathematique 110
(124) (2021), 121-129.
- [16] S. Temir and O. Korkut, Approximating fixed points of generalized anonexpansive mapping by the new iteration process, Journal of Mathematical
Sciences and Modelling 5(1) (2022), 35-39.
- [17] S. Temir and O. Korkut, Some Convergence Results Using A New Iteration Process for Generalized Nonexpansive Mappings in Banach Spaces,
Asian-European Journal of Mathematics, 16(05) 2350077 (2023).
- [18] S. Temir, Convergence theorems for a general class of nonexpansive mappings in Banach spaces, International Journal of Nonlinear Analysis and
Applications (in press).
- [19] B.S.Thakur, D.Thakur, M.Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings,
Applied Mathematics and Computation, 275 (2016), 147-155.
- [20] K.Ullah and M.Arshad, Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process, Filomat 32(1)
(2018), 187-196.
- [21] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Analysis 16 (1991), 1127-1138.
- [22] I. Yildirim, On fixed point results for mixed nonexpansive mappings, Mathematical Methods for Engineering Applications, ICMASE 2021, Salamanca,
Spain, July 1–2, 2022/4/16.
- [23] I. Yildirim, N. Karaca, Generalized (a;b)nonexpansive multivalued mappings and their properties, 1st Int. Cong. Natural Sci., (2021), 672–679.
Approximating Common Fixed Point of Three $C$-$\alpha$ Nonexpansive Mappings
Year 2023,
Volume: 11 Issue: 2, 184 - 194, 31.10.2023
Seyit Temir
,
Zeynep Bayram
Abstract
In this paper, we consider a new class of nonlinear mappings presented in \cite{Shukla} that generalizes two well-known classes of nonexpansive type mappings and extends some other classes of mappings. We introduce approximating common fixed point of three C-$\alpha$ nonexpansive mappings through weak and strong convergence of an iterative sequence in a uniformly convex Banach space. We also numerically illustrate the common fixed point approximations of the presented iteration for the three $C$-$\alpha$ nonexpansive mappings.
References
- [1] J.Ali, F. Ali, F. P.Kumar, Approximation of Fixed Points for Suzuki’s Generalized Non-Expansive Mappings, Mathematics 7(6), 522 (2019), 1-11.
- [2] D. Ariza-Ruiz, C. Hernandez Linares, E. Llorens-Fuster and E. Moreno-Galvez, On anonexpansive mappings in Banach spaces, Carpathian J. Math.
32 (2016), 13-28.
- [3] K. Aoyama and F. Kohsaka, Fixed point theorem for anonexpansive mappings in Banach spaces, Nonlinear Analy. 74 (13) (2011), 4378-4391.
- [4] A. Ekinci and S. Temir, Convergence theorems for Suzuki generalized nonexpansive mapping in Banach spaces, Tamkang Journal of Mathematics 54 (1)
(2023), 57-67.
- [5] J. Garcia-Falset, E. Llorens-Fuster, T. Suzuki, Fixed Point Theory for A Class of Generalized Nonexpansive Mappings, Journal of Mathematical Analysis
and Applications 375(1), (2011), 185-195.
- [6] G. Maniu, On a three-step iteration process for Suzuki mappings with qualitative study, Numerical Functional Analysis and Optimization, 41:8 (2020),
929-949.
- [7] E. Naraghirad, N.-C. Wong and J.-C. Yao, Approximating fixed points of anonexpansive mappings in uniformly convex Banach spaces and CAT(0)
spaces, Fixed Point Theory and Applications 2013/1/57, (2013), 20 pages.
- [8] M.A. Noor, New approximation schemes for general variational inequalities, Journal of Mathematical Analysis and Applications, 251 (2000), 217-229.
- [9] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull. Ame. Math.Soc. 73 (1967), 591-597.
- [10] R. Pandey, R. Pant, W. Rakocevic, R. Shukla, Approximating Fixed Points of A General Class of Nonexpansive Mappings in Banach Spaces with
Applications, Results in Mathematics, 74(7) (2019), 24 pages.
- [11] R. Pant and R. Shukla, Approximating fixed points of generalized a-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim. 38(2)
(2017), 248-266.
- [12] R. Pant and R. Shukla, Fixed point theorems for a new class of nonexpansive mappings, Appl. Gen. Topol. 23(2) (2022), 377-390.
- [13] H. Piri, B. Daraby, S. Rahrovi, M. Ghasemi, Approximating fixed points of generalized ?-nonexpansive mappings in Banach spaces by new faster
iteration process, Numerical Algorithms 81 (2019),1129–1148, DOI:10.1007/s11075-018-0588-x.
- [14] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, Journal of Mathematical Analysis and
Applications, 340(2) (2008), 1088-1095.
- [15] S. Temir, Weak and strong convergence theorems for three Suzuki’s generalized nonexpansive mappings, Publications de l’Institut Mathematique 110
(124) (2021), 121-129.
- [16] S. Temir and O. Korkut, Approximating fixed points of generalized anonexpansive mapping by the new iteration process, Journal of Mathematical
Sciences and Modelling 5(1) (2022), 35-39.
- [17] S. Temir and O. Korkut, Some Convergence Results Using A New Iteration Process for Generalized Nonexpansive Mappings in Banach Spaces,
Asian-European Journal of Mathematics, 16(05) 2350077 (2023).
- [18] S. Temir, Convergence theorems for a general class of nonexpansive mappings in Banach spaces, International Journal of Nonlinear Analysis and
Applications (in press).
- [19] B.S.Thakur, D.Thakur, M.Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings,
Applied Mathematics and Computation, 275 (2016), 147-155.
- [20] K.Ullah and M.Arshad, Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process, Filomat 32(1)
(2018), 187-196.
- [21] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Analysis 16 (1991), 1127-1138.
- [22] I. Yildirim, On fixed point results for mixed nonexpansive mappings, Mathematical Methods for Engineering Applications, ICMASE 2021, Salamanca,
Spain, July 1–2, 2022/4/16.
- [23] I. Yildirim, N. Karaca, Generalized (a;b)nonexpansive multivalued mappings and their properties, 1st Int. Cong. Natural Sci., (2021), 672–679.