Year 2023,
Volume: 11 Issue: 2, 141 - 147, 31.10.2023
Sandipan Dutta
,
Sneha Gupta
References
- [1] Bischof, C.H., Pusch, G.O., Knoesel, R.: Sensitivity analysis of the mm5 weather model using automatic differentiation. Computers in Physics 10(6),
605–612 (1996)
- [2] Bisi, C., De Martino, A., Winkelmann, J.: On a runge theorem over R3. Annali di Matematica 202(4), 1531–1556 (2023)
- [3] Bisi, C., Winkelmann, J.: On a quaternionic Picard theorem. Proc. Amer. Math. Soc., Ser. B, 7, 106–117 (2020)
- [4] Bisi, C., Winkelmann, J.: The harmonicity of slice regular functions. The Journal of Geometric Analysis 31(8), 7773–7811 (2021)
- [5] Casanova, G.: Parabolic analytic functions. Adv. Appl. Clifford Algebras 9(2), 221–224 (1999)
- [6] Catoni, F., Cannata, R., Catoni, V., Zampetti, P.: N-dimensional geometries generated by hypercomplex numbers. Adv. Appl. Clifford Algebr. 15(1),
1–25 (2005)
- [7] Catoni, F., Cannata, R., Nichelatti, E.: The parabolic analytic functions and the derivative of real functions. Adv. Appl. Clifford Algebr. 14(2), 185–190
(2004)
- [8] Fjelstad, P., Gal, S.G.: Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers. Adv. Appl. Clifford
Algebras 11(1), 81–107 (2001)
- [9] Gentili, G., Stoppato, C., Struppa, D.: Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics. Springer (2022)
- [10] Hovland, P.D., et al: Sensitivity analysis and design optimization through automatic differentiation. J. Phys.: Conf. Ser. 16, 466–470 (2005)
- [11] Kedem, G.: Automatic differentiation of computer programs. ACM Trans. Math. Software 6(2), 150–165 (1980)
- [12] Mehmood, S., Ochs, P.: Automatic differentiation of some first-order methods in parametric optimization. In: Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, vol. 108, pp. 1584–1594. PMLR (2020)
- [13] Pe˜nu nuri, F., Pe´on, R., Gonz´alez-S´anchez, D., Escalante Soberanis, M.A.: Dual numbers and automatic differentiation to efficiently compute velocities
and accelerations. Acta Appl. Math. 170, 649–659 (2020)
- [14] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in Fortran 77: The art of scientific computing. Cambridge University
Press (1992)
- [15] Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education (2007)
- [16] Yaglom, I.M.: A simple non-Euclidean geometry and its physical basis. Heidelberg Science Library. Springer-Verlag, New York-Heidelberg (1979). An
elementary account of Galilean geometry and the Galilean principle of relativity, Translated from the Russian by Abe Shenitzer, With the editorial
assistance of Basil Gordon.
Higher Order Real Derivatives Using Parabolic Analytic Functions
Year 2023,
Volume: 11 Issue: 2, 141 - 147, 31.10.2023
Sandipan Dutta
,
Sneha Gupta
Abstract
Amid the bidimensional hypercomplex numbers, parabolic numbers are defined as $\{z=x+\imath y:\; x,y\in \mathbb{R}, \imath^2=0, \imath\neq 0\}$. The analytic functions of a parabolic variable have been introduced as an analytic continuation of the real function of a real variable. Also, their algebraic property has already been discussed. This paper will show the $n$-th derivative of the real functions using parabolic numbers to further generalize the automatic differentiation. Also, we shall show some of the applications of it.
References
- [1] Bischof, C.H., Pusch, G.O., Knoesel, R.: Sensitivity analysis of the mm5 weather model using automatic differentiation. Computers in Physics 10(6),
605–612 (1996)
- [2] Bisi, C., De Martino, A., Winkelmann, J.: On a runge theorem over R3. Annali di Matematica 202(4), 1531–1556 (2023)
- [3] Bisi, C., Winkelmann, J.: On a quaternionic Picard theorem. Proc. Amer. Math. Soc., Ser. B, 7, 106–117 (2020)
- [4] Bisi, C., Winkelmann, J.: The harmonicity of slice regular functions. The Journal of Geometric Analysis 31(8), 7773–7811 (2021)
- [5] Casanova, G.: Parabolic analytic functions. Adv. Appl. Clifford Algebras 9(2), 221–224 (1999)
- [6] Catoni, F., Cannata, R., Catoni, V., Zampetti, P.: N-dimensional geometries generated by hypercomplex numbers. Adv. Appl. Clifford Algebr. 15(1),
1–25 (2005)
- [7] Catoni, F., Cannata, R., Nichelatti, E.: The parabolic analytic functions and the derivative of real functions. Adv. Appl. Clifford Algebr. 14(2), 185–190
(2004)
- [8] Fjelstad, P., Gal, S.G.: Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers. Adv. Appl. Clifford
Algebras 11(1), 81–107 (2001)
- [9] Gentili, G., Stoppato, C., Struppa, D.: Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics. Springer (2022)
- [10] Hovland, P.D., et al: Sensitivity analysis and design optimization through automatic differentiation. J. Phys.: Conf. Ser. 16, 466–470 (2005)
- [11] Kedem, G.: Automatic differentiation of computer programs. ACM Trans. Math. Software 6(2), 150–165 (1980)
- [12] Mehmood, S., Ochs, P.: Automatic differentiation of some first-order methods in parametric optimization. In: Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, vol. 108, pp. 1584–1594. PMLR (2020)
- [13] Pe˜nu nuri, F., Pe´on, R., Gonz´alez-S´anchez, D., Escalante Soberanis, M.A.: Dual numbers and automatic differentiation to efficiently compute velocities
and accelerations. Acta Appl. Math. 170, 649–659 (2020)
- [14] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in Fortran 77: The art of scientific computing. Cambridge University
Press (1992)
- [15] Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education (2007)
- [16] Yaglom, I.M.: A simple non-Euclidean geometry and its physical basis. Heidelberg Science Library. Springer-Verlag, New York-Heidelberg (1979). An
elementary account of Galilean geometry and the Galilean principle of relativity, Translated from the Russian by Abe Shenitzer, With the editorial
assistance of Basil Gordon.