Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 12 Sayı: 1, 46 - 54, 30.04.2024

Öz

Kaynakça

  • [1] Hamilton, W. R.: Elements of Quaternions. Longmans, Green and Co., London, (1866)
  • [2] Horadam, A. F.: Complex Fibonacci Numbers and Fibonacci Quaternions. American Math. Monthly. 70 (3), 289-291 (1963)
  • [3] Halıcı S.: On Fibonacci Quaternions. Adv. Appl. Clifford Algebras. 22 (2), 321-327 (2013)
  • [4] E. Polatli, S. Kesim, On quaternions with generalized fibonacci and lucas number components, Advances in Difference Equations 2015 (1) (2015) 1–8.
  • [5] E. Polatlı, A generalization of fibonacci and lucas quaternions, Advances in Applied Clifford Algebras 26 (2016) 719–730.
  • [6] E. Tan, S. Yilmaz, M. Sahin, On a new generalization of fibonacci quaternions, Chaos, Solitons & Fractals 82 (2016) 1–4.
  • [7] M. Akyigit, H. H¨uda K¨osal, M. Tosun, Fibonacci generalized quaternions, Advances in Applied Clifford Algebras 24 (2014) 631–641.
  • [8] S. Halici, A. Karata¸s, On a generalization for fibonacci quaternions, Chaos, Solitons & Fractals 98 (2017) 178–182.
  • [9] A. Horadam, Quaternion recurrence relations, Ulam Quarterly 2 (2) (1993) 23–33.
  • [10] M. R. Iyer, A note on fibonacci quaternions, Fibonacci Quart 7 (3) (1969) 225–229.
  • [11] M. Ozvatan, Generalized golden-fibonacci calculus and applications, Ph.D. thesis, Izmir Institute of Technology (Turkey) (2018).
  • [12] C. Kizilates¸, T. Kone, On higher order fibonacci quaternions, The Journal of Analysis (2021) 1–12.
  • [13] M. Uysal, E. Ozkan, Higher-order jacobsthal–lucas quaternions, Axioms 11 (12) (2022) 671.
  • [14] E. O¨ zkan, M. Uysal, On quaternions with higher order jacobsthal numbers components, Gazi University Journal of Science (2023) 1–1.
  • [15] M. Ozdemir, Introduction to hybrid numbers, Advances in applied Clifford algebras 28 (2018) 1–32.
  • [16] A. Da˘gdeviren, F. K¨ur¨uz, On the horadam hybrid quaternions, arXiv preprint arXiv:2012.08277.
  • [17] M. d. S. MAngueria, F. Alves, P. Catarino, Hybrid quaternions of leonardo, Trends in Computational and Applied Mathematics 23 (2022) 51–62.

On Higher Order Lucas Hybrid Quaternions

Yıl 2024, Cilt: 12 Sayı: 1, 46 - 54, 30.04.2024

Öz

In this article, we introduced higher order Lucas hybrid quaternions with the help of higher order Lucas numbers. We also examined some algebraic properties of these quaternions. By obtaining the recurrence relation, we found the Binet formula, the generating function and the exponential generating function. Finally, we calculated the Vajda identity for the higher order Lucas hybrid quaternions and obtained the Catalan, Cassini and d'Ocagne identities with the help of this identity.

Kaynakça

  • [1] Hamilton, W. R.: Elements of Quaternions. Longmans, Green and Co., London, (1866)
  • [2] Horadam, A. F.: Complex Fibonacci Numbers and Fibonacci Quaternions. American Math. Monthly. 70 (3), 289-291 (1963)
  • [3] Halıcı S.: On Fibonacci Quaternions. Adv. Appl. Clifford Algebras. 22 (2), 321-327 (2013)
  • [4] E. Polatli, S. Kesim, On quaternions with generalized fibonacci and lucas number components, Advances in Difference Equations 2015 (1) (2015) 1–8.
  • [5] E. Polatlı, A generalization of fibonacci and lucas quaternions, Advances in Applied Clifford Algebras 26 (2016) 719–730.
  • [6] E. Tan, S. Yilmaz, M. Sahin, On a new generalization of fibonacci quaternions, Chaos, Solitons & Fractals 82 (2016) 1–4.
  • [7] M. Akyigit, H. H¨uda K¨osal, M. Tosun, Fibonacci generalized quaternions, Advances in Applied Clifford Algebras 24 (2014) 631–641.
  • [8] S. Halici, A. Karata¸s, On a generalization for fibonacci quaternions, Chaos, Solitons & Fractals 98 (2017) 178–182.
  • [9] A. Horadam, Quaternion recurrence relations, Ulam Quarterly 2 (2) (1993) 23–33.
  • [10] M. R. Iyer, A note on fibonacci quaternions, Fibonacci Quart 7 (3) (1969) 225–229.
  • [11] M. Ozvatan, Generalized golden-fibonacci calculus and applications, Ph.D. thesis, Izmir Institute of Technology (Turkey) (2018).
  • [12] C. Kizilates¸, T. Kone, On higher order fibonacci quaternions, The Journal of Analysis (2021) 1–12.
  • [13] M. Uysal, E. Ozkan, Higher-order jacobsthal–lucas quaternions, Axioms 11 (12) (2022) 671.
  • [14] E. O¨ zkan, M. Uysal, On quaternions with higher order jacobsthal numbers components, Gazi University Journal of Science (2023) 1–1.
  • [15] M. Ozdemir, Introduction to hybrid numbers, Advances in applied Clifford algebras 28 (2018) 1–32.
  • [16] A. Da˘gdeviren, F. K¨ur¨uz, On the horadam hybrid quaternions, arXiv preprint arXiv:2012.08277.
  • [17] M. d. S. MAngueria, F. Alves, P. Catarino, Hybrid quaternions of leonardo, Trends in Computational and Applied Mathematics 23 (2022) 51–62.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik (Diğer)
Bölüm Articles
Yazarlar

Fügen Torunbalcı Aydın 0000-0001-9292-1832

Erken Görünüm Tarihi 29 Nisan 2024
Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 14 Kasım 2023
Kabul Tarihi 11 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 1

Kaynak Göster

APA Torunbalcı Aydın, F. (2024). On Higher Order Lucas Hybrid Quaternions. Konuralp Journal of Mathematics, 12(1), 46-54.
AMA Torunbalcı Aydın F. On Higher Order Lucas Hybrid Quaternions. Konuralp J. Math. Nisan 2024;12(1):46-54.
Chicago Torunbalcı Aydın, Fügen. “On Higher Order Lucas Hybrid Quaternions”. Konuralp Journal of Mathematics 12, sy. 1 (Nisan 2024): 46-54.
EndNote Torunbalcı Aydın F (01 Nisan 2024) On Higher Order Lucas Hybrid Quaternions. Konuralp Journal of Mathematics 12 1 46–54.
IEEE F. Torunbalcı Aydın, “On Higher Order Lucas Hybrid Quaternions”, Konuralp J. Math., c. 12, sy. 1, ss. 46–54, 2024.
ISNAD Torunbalcı Aydın, Fügen. “On Higher Order Lucas Hybrid Quaternions”. Konuralp Journal of Mathematics 12/1 (Nisan 2024), 46-54.
JAMA Torunbalcı Aydın F. On Higher Order Lucas Hybrid Quaternions. Konuralp J. Math. 2024;12:46–54.
MLA Torunbalcı Aydın, Fügen. “On Higher Order Lucas Hybrid Quaternions”. Konuralp Journal of Mathematics, c. 12, sy. 1, 2024, ss. 46-54.
Vancouver Torunbalcı Aydın F. On Higher Order Lucas Hybrid Quaternions. Konuralp J. Math. 2024;12(1):46-54.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.