Research Article
BibTex RIS Cite

Year 2025, Volume: 13 Issue: 2, 180 - 189, 31.10.2025

Abstract

References

  • [1] S. N. Elaydi, Discrete chaos: with applications in science and engineering, 2007, Chapman and Hall/CRC.
  • [2] M. Martcheva, An introduction to mathematical epidemiology, 2015, New York: Springer.
  • [3] A. de Moivre, De Fractionibus Algebraicis Radicalitate immunibus ad Fractiones Simpliciores reducendis, deque summandis Terminis quarumdam Serierum aequali Intervallo a se distantibus, Philos. Trans. 32 (1722), 162–178. (in Latin).
  • [4] A. de Moivre, Miscellanea analytica de seriebus et quadraturis, 1730. (in Latin).
  • [5] M. R. May, Simple mathematical models with very complicated dynamics. Nature, 261(5560) 1976, 459-467.
  • [6] M. Gumus and K. Turk, Dynamical behavior of a hepatitis B epidemic model and its NSFD scheme, Journal of Applied Mathematics and Computing, 70 2024, 3767-3788.
  • [7] M. Gumus¸ and K. Turk, A note on the dynamics of a COVID-19 epidemic model with saturated incidence rate, The European Physical Journal Special Topics, 2025 (in press).
  • [8] U. Cakan, Stability Analysis of a Mathematical Model SIIQR for COVID-19 with the Effect of Contamination Control (Filiation) Strategy, Fundam. J. Math. Appl., 4(2) 2021, 110-123. doi:10.33401/fujma.863224
  • [9] A. Q. Khan, A. Maqbool, M. J. Uddin and S. M. S. Rana, Dynamical analysis of a two-dimensional discrete predator–prey model, Journal of Computational and Applied Mathematics, 440 (2024), 115578.
  • [10] M. F. Ansori and F. H. G¨um¨us¸, A Difference Equation of Banking Loan with Nonlinear Deposit Interest Rate, Journal of Mathematical Sciences and Modelling, 7(1) (2024), 14-19.
  • [11] N. Touafek and E.M. Elsayed, On a second order rational systems of difference equations, Hokkaido Math. J. 44(1) (2015), 29-45.
  • [12] F. Alzahrani, A. Khaliq, E. M. Elsayed, Dynamics and behaviour of some rational systems of difference equations, J. Comput. Theor. Nanosci., 13 (2016), 8583-8599. https://doi.org/10.1166/jctn.2016.6016.
  • [13] I. M. Alsulami, and E. M. Elsayed, On a class of nonlinear rational systems of difference equations, AIMS Mathematics, 8(7) (2023), 15466􀀀15485.
  • [14] M. Kara and Y. Yazlik, On a Solvable Three-Dimensional System of Difference Equations, Filomat 34 : 4 (2020), 1167-1186.
  • [15] M. Kara, Y. Yazlik and D.T. Tollu, Solvability of a system of higher order nonlinear difference equations, Hacet. J. Math. Stat., 49(5) (2020), 1566-1593.
  • [16] E. M. Elabbasy and E. M. Elsayed, Dynamics of a rational difference equation, Chin. Ann. Math., 30B(2) (2009), 187-198.
  • [17] S. Stevic, General solutions to four classes of nonlinear difference equations and some of their representations, Electron. J. Qual. Theory Differ. Equ.75 2019, 1-19.
  • [18] F. H. Gumus¸ and R. Abo-Zeid, On the qualitative and quantitative analysis for two fourth-order difference equations, J. Appl. Math. Comput., 70 (2024), 1419-1439.
  • [19] R. Abo-Zeid, Global behavior and oscillation of a third order difference equation, Quaest. Math., 44(9) (2021), 1261-1280.
  • [20] M. Gumus and S. I. Egilmez, The Qualitative Analysis of Some Difference Equations Using Homogeneous Functions, Fundamental Journal of Mathematics and Applications, 6(4) 2023, 218 - 231.
  • [21] M. Aloqeili and A. Shareef, Neimark-Sacker Bifurcation of a Third Order Difference Equation, Fundam. J. Math. Appl., 2 2019, 40-49.
  • [22] R. Abo-Zeid, On the solutions of a higher order difference equation, Georgian Math. J., 27(2) (2020), 165-175.
  • [23] R Abo-Zeid, Global behavior of two third order rational difference equations with quadratic terms, Math. Slovaca, 69(1) (2019), 147-158. https://doi.org/10.1515/gmj-2018-0008
  • [24] R. Abo-Zeid, Forbidden sets and stability in some rational difference equations, J. Difference Equ. Appl., 24(2) (2018), 220-239.
  • [25] R Abo-Zeid, Global asymptotic stability of a second order rational difference equation, J. Appl. Math. & Inf., 28(4-3) (2010), 797-804.
  • [26] O. Aktas, M. Kara and Y. Yazlik, Solvability of a two-dimensional system of difference equations with constant coefficients, Ikonion Journal of Mathematics, 6(2) (2024), 1-12.
  • [27] A.M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 2, Int. J. Difference Equ., 3(2) (2008), 195-225.
  • [28] A.M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 1, Int. J. Difference Equ., 3(1) (2008), 1-35.
  • [29] M. Gumus, R. Abo-Zeid and K. T¨urk, Global behavior of solutions of a two-dimensional system of difference equations, Ikonian J. Math., 6(2) (2024), 13-29.
  • [30] M. Gumus and R. Abo-Zeid, On the solutions of a (2k+2)th order difference equation, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 25 (2018), 129-143.
  • [31] M. Kara and Y. Yazlik, On a solvable system of rational difference equations of higher order, Turk. J. Math., 46 (2022), 587-611.
  • [32] M. Kara and Y. Yazlik, On a solvable system of difference equations via some number sequences, Int. J. Nonlinear Anal. Appl., 13(2) (2022), 2611-2637.
  • [33] H. Sedaghat, On third order rational equations with quadratic terms, J. Difference Equ. Appl., 14(8) (2008), 889􀀀897.

Analysis and Representation of Solutions of a Nonlinear Difference Equation System

Year 2025, Volume: 13 Issue: 2, 180 - 189, 31.10.2025

Abstract

Difference equations and systems of difference equations have an important place in many branches of science. These equations (systems) play a critical role in modeling physical systems, engineering problems and many biological problems. In addition, it is widespread to use difference equations to obtain numerical solutions of differential equations. In this paper, we derive a representation of the well-defined solutions of the two-dimensional non-linear system of difference equations \begin{equation*}\label{1} x_{n+1}=\frac{y_{n-1}x_{n-2}}{ax_{n-2}+by_{n}},\quad y_{n+1}=\frac{x_{n-1}y_{n-2}}{cy_{n-2}+dx_{n}},\text{ }n=0,1,..., \end{equation*}% where $a,b,c,d,$ and the initial values $x_{-2},x_{-1},x_{0},y_{-2},y_{-1},y_{0}$ are real numbers. We determine the well-defined solutions to the above-mentioned system when $a=b=c=d=1$ as well as when $a=b=c=-d=1$. In addition, the theoretical results obtained here are also supported by numerical examples and simulations.

References

  • [1] S. N. Elaydi, Discrete chaos: with applications in science and engineering, 2007, Chapman and Hall/CRC.
  • [2] M. Martcheva, An introduction to mathematical epidemiology, 2015, New York: Springer.
  • [3] A. de Moivre, De Fractionibus Algebraicis Radicalitate immunibus ad Fractiones Simpliciores reducendis, deque summandis Terminis quarumdam Serierum aequali Intervallo a se distantibus, Philos. Trans. 32 (1722), 162–178. (in Latin).
  • [4] A. de Moivre, Miscellanea analytica de seriebus et quadraturis, 1730. (in Latin).
  • [5] M. R. May, Simple mathematical models with very complicated dynamics. Nature, 261(5560) 1976, 459-467.
  • [6] M. Gumus and K. Turk, Dynamical behavior of a hepatitis B epidemic model and its NSFD scheme, Journal of Applied Mathematics and Computing, 70 2024, 3767-3788.
  • [7] M. Gumus¸ and K. Turk, A note on the dynamics of a COVID-19 epidemic model with saturated incidence rate, The European Physical Journal Special Topics, 2025 (in press).
  • [8] U. Cakan, Stability Analysis of a Mathematical Model SIIQR for COVID-19 with the Effect of Contamination Control (Filiation) Strategy, Fundam. J. Math. Appl., 4(2) 2021, 110-123. doi:10.33401/fujma.863224
  • [9] A. Q. Khan, A. Maqbool, M. J. Uddin and S. M. S. Rana, Dynamical analysis of a two-dimensional discrete predator–prey model, Journal of Computational and Applied Mathematics, 440 (2024), 115578.
  • [10] M. F. Ansori and F. H. G¨um¨us¸, A Difference Equation of Banking Loan with Nonlinear Deposit Interest Rate, Journal of Mathematical Sciences and Modelling, 7(1) (2024), 14-19.
  • [11] N. Touafek and E.M. Elsayed, On a second order rational systems of difference equations, Hokkaido Math. J. 44(1) (2015), 29-45.
  • [12] F. Alzahrani, A. Khaliq, E. M. Elsayed, Dynamics and behaviour of some rational systems of difference equations, J. Comput. Theor. Nanosci., 13 (2016), 8583-8599. https://doi.org/10.1166/jctn.2016.6016.
  • [13] I. M. Alsulami, and E. M. Elsayed, On a class of nonlinear rational systems of difference equations, AIMS Mathematics, 8(7) (2023), 15466􀀀15485.
  • [14] M. Kara and Y. Yazlik, On a Solvable Three-Dimensional System of Difference Equations, Filomat 34 : 4 (2020), 1167-1186.
  • [15] M. Kara, Y. Yazlik and D.T. Tollu, Solvability of a system of higher order nonlinear difference equations, Hacet. J. Math. Stat., 49(5) (2020), 1566-1593.
  • [16] E. M. Elabbasy and E. M. Elsayed, Dynamics of a rational difference equation, Chin. Ann. Math., 30B(2) (2009), 187-198.
  • [17] S. Stevic, General solutions to four classes of nonlinear difference equations and some of their representations, Electron. J. Qual. Theory Differ. Equ.75 2019, 1-19.
  • [18] F. H. Gumus¸ and R. Abo-Zeid, On the qualitative and quantitative analysis for two fourth-order difference equations, J. Appl. Math. Comput., 70 (2024), 1419-1439.
  • [19] R. Abo-Zeid, Global behavior and oscillation of a third order difference equation, Quaest. Math., 44(9) (2021), 1261-1280.
  • [20] M. Gumus and S. I. Egilmez, The Qualitative Analysis of Some Difference Equations Using Homogeneous Functions, Fundamental Journal of Mathematics and Applications, 6(4) 2023, 218 - 231.
  • [21] M. Aloqeili and A. Shareef, Neimark-Sacker Bifurcation of a Third Order Difference Equation, Fundam. J. Math. Appl., 2 2019, 40-49.
  • [22] R. Abo-Zeid, On the solutions of a higher order difference equation, Georgian Math. J., 27(2) (2020), 165-175.
  • [23] R Abo-Zeid, Global behavior of two third order rational difference equations with quadratic terms, Math. Slovaca, 69(1) (2019), 147-158. https://doi.org/10.1515/gmj-2018-0008
  • [24] R. Abo-Zeid, Forbidden sets and stability in some rational difference equations, J. Difference Equ. Appl., 24(2) (2018), 220-239.
  • [25] R Abo-Zeid, Global asymptotic stability of a second order rational difference equation, J. Appl. Math. & Inf., 28(4-3) (2010), 797-804.
  • [26] O. Aktas, M. Kara and Y. Yazlik, Solvability of a two-dimensional system of difference equations with constant coefficients, Ikonion Journal of Mathematics, 6(2) (2024), 1-12.
  • [27] A.M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 2, Int. J. Difference Equ., 3(2) (2008), 195-225.
  • [28] A.M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 1, Int. J. Difference Equ., 3(1) (2008), 1-35.
  • [29] M. Gumus, R. Abo-Zeid and K. T¨urk, Global behavior of solutions of a two-dimensional system of difference equations, Ikonian J. Math., 6(2) (2024), 13-29.
  • [30] M. Gumus and R. Abo-Zeid, On the solutions of a (2k+2)th order difference equation, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 25 (2018), 129-143.
  • [31] M. Kara and Y. Yazlik, On a solvable system of rational difference equations of higher order, Turk. J. Math., 46 (2022), 587-611.
  • [32] M. Kara and Y. Yazlik, On a solvable system of difference equations via some number sequences, Int. J. Nonlinear Anal. Appl., 13(2) (2022), 2611-2637.
  • [33] H. Sedaghat, On third order rational equations with quadratic terms, J. Difference Equ. Appl., 14(8) (2008), 889􀀀897.
There are 33 citations in total.

Details

Primary Language English
Subjects Dynamical Systems in Applications
Journal Section Articles
Authors

Mehmet Gümüş 0000-0002-7447-479X

Raafat Abo-zeid

Anwar Zeb

Aleyna Sezgin 0009-0008-7989-1120

Publication Date October 31, 2025
Submission Date February 12, 2025
Acceptance Date May 11, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Gümüş, M., Abo-zeid, R., Zeb, A., Sezgin, A. (2025). Analysis and Representation of Solutions of a Nonlinear Difference Equation System. Konuralp Journal of Mathematics, 13(2), 180-189.
AMA Gümüş M, Abo-zeid R, Zeb A, Sezgin A. Analysis and Representation of Solutions of a Nonlinear Difference Equation System. Konuralp J. Math. October 2025;13(2):180-189.
Chicago Gümüş, Mehmet, Raafat Abo-zeid, Anwar Zeb, and Aleyna Sezgin. “Analysis and Representation of Solutions of a Nonlinear Difference Equation System”. Konuralp Journal of Mathematics 13, no. 2 (October 2025): 180-89.
EndNote Gümüş M, Abo-zeid R, Zeb A, Sezgin A (October 1, 2025) Analysis and Representation of Solutions of a Nonlinear Difference Equation System. Konuralp Journal of Mathematics 13 2 180–189.
IEEE M. Gümüş, R. Abo-zeid, A. Zeb, and A. Sezgin, “Analysis and Representation of Solutions of a Nonlinear Difference Equation System”, Konuralp J. Math., vol. 13, no. 2, pp. 180–189, 2025.
ISNAD Gümüş, Mehmet et al. “Analysis and Representation of Solutions of a Nonlinear Difference Equation System”. Konuralp Journal of Mathematics 13/2 (October2025), 180-189.
JAMA Gümüş M, Abo-zeid R, Zeb A, Sezgin A. Analysis and Representation of Solutions of a Nonlinear Difference Equation System. Konuralp J. Math. 2025;13:180–189.
MLA Gümüş, Mehmet et al. “Analysis and Representation of Solutions of a Nonlinear Difference Equation System”. Konuralp Journal of Mathematics, vol. 13, no. 2, 2025, pp. 180-9.
Vancouver Gümüş M, Abo-zeid R, Zeb A, Sezgin A. Analysis and Representation of Solutions of a Nonlinear Difference Equation System. Konuralp J. Math. 2025;13(2):180-9.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.