Araştırma Makalesi
BibTex RIS Kaynak Göster

Interactive Effects of Lake Morphometry and Sticklebacks on the Trophic Position of Arctic charr, Salvelinus alpinus (L.), across Lakes in Western Greenland

Yıl 2022, Cilt: 8 Sayı: 2, 101 - 115, 26.08.2022
https://doi.org/10.17216/limnofish.1020722

Öz

The structure and functioning of Arctic ecosystems have been drastically modified by global warming, with fish species potentially performing habitat shifts such as the northern expansion of generalist and warm-adapted species. The freshwater fish species Arctic charr (Salvelinus alpinus, hereafter charr) plays a key role in Arctic lake food webs, but sticklebacks (Gasterosteus aculeatus) may impact the trophic position (TP) of charr by affecting their habitat choice and food resources. In the present study, we used multiple regression analyses to examine the role of lake morphology (i.e., depth and area) and the influence of sticklebacks on the TP of charr (estimated from δ15N and δ13C) sampled in nine Arctic lakes in Western Greenland between 2011 and 2013. Results showed that charr populations exhibited larger TP values when co-occurring with sticklebacks. Specifically, for larger and deeper lakes, a significant positive effect on TP values was observed for medium-sized (25 to 35 cm) charr. Moreover, the TP of sticklebacks had a null effect on the TP values of the largest charr (> 40 cm), suggesting that the largest-sized charr individuals did not prey on sticklebacks. We conclude that charr undergoes flexible ontogenetic trophic trajectories depending on the species composition of the Arctic fish community structure (here presence or absence of sticklebacks) and abiotic lake features.

Teşekkür

We thank Anne Mette Poulsen, Kathe Møgelvang and Tinna Christensen for manuscript assistance and layout and the technical staff at Aarhus University for valuable support. The work was supported by the “Global Climate Change Programme” (no. 9700195) and the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu). Funding for the 2012 expedition to Greenland was provided by the Carlsberg Foundation (Project 2013_01_0535) and the Arctic Research Centre, AU. During the writing phase, EJ and TAD were supported by the North Water Project (NOW), funded by the Velux Foundations and the Carlsberg Foundation, and TLL was supported by the Arctic Research Centre, AU. EJ was also supported by Tübitak BIDEB 2232 (project 118C250). NM was supported by SNI-Uruguay. RFM was supported by the Coordination for the Improvement of Higher Educational Personnel (CAPES) under the Brazilian Postdoctoral National Program (PNPD- Nº 2304/2011).

Kaynakça

  • Adams C, Huntingford FA. 2002. Inherited differences in head allometry in polymorphic Arctic charr from Loch Rannoch, Scotland. J Fish Biol. 60(3):515–520. doi: 10.1111/j.1095-8649.2002.tb01680.x
  • Amundsen PA. 2016. Contrasting life-history strategies facilitated by cannibalism in a stunted Arctic charr population. Hydrobiologia 783(1):11-19. doi: 10.1007/s10750-015-2600-y
  • Belsley DA, Kuh E, Welsch RE. 1980. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. J R Stat Soc. 144:367–368.
  • Bennike O, Sørensen M, Fredskild B, Jakobsen BH, Böcher J, Amsinck SL, Jeppesen E, Andreasen C, Christiansen HH, Humlum O, Meltofte H, Røjle Christensen T, Elberling B, Forchhammer MC, Rasch M. 2008. Late Quaternary environmental and cultural changes in the Wollaston Forland Region, Northeast Greenland. In High-Arctic ecosystem dynamics in a changing climate: ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland. Adv Ecol Res. 40:45–79. doi: 10.1016/S0065-2504(07)00003-7
  • Bolnick DI, Ingram T, Stutz WE, Snowberg LK, Lau OL, Paull JS. 2010. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc Royal Soc. B 277: 1789–1797. doi: 10.1098/rspb.2010.0018
  • Brodersen J, Malmquist HJ, Landkildehus F, Lauridsen TL, Amsinck SL, Bjerring R, Sondergaard M, Johansson LS, Christoffersen KS, Jeppesen E. 2012. Short-and long term niche segregation and individual specialization of brown trout (Salmo trutta) in species poor Faroese lakes. Environ Biol Fish. 93(3):305–318. doi: 10.1007/s10641-011-9914-z
  • Connell JH. 1961. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamauls stellatus. Ecology. 42(4): 710-723. doi: 10.2307/1933500
  • Coumou D, Capua GD, Vavrus S, Wang L, Wang S. 2018. The influence of Arctic amplification on mid-latitude summer circulation. Nat Commun. 9: 2959. doi: 10.1038/s41467-018-05256-8
  • Davidsen JG, Power M, Knudsen R, Sjursen AD, Kjærstad G, Rønning L, Arnekleiv, JV. 2020. Marine trophic niche-use and life history diversity among Arctic charr Salvelinus alpinus in southwestern Greenland. J Fish Biol 96(3):681–692. doi: 10.1111/jfb.14261
  • Doenz CJ, Krähenbühl AK, Walker J, Seehausen O, Brodersen J. 2019. Ecological opportunity shapes a large Arctic charr species radiation. Proc Royal Soc B. 286: 20191992. doi: 10.1098/rspb.2019.1992
  • Eloranta AP, Kahilainen KK, Jones RI. 2010. Seasonal and ontogenetic shifts in diet of Arctic charr Salvelinus alpinus (L.) in a subarctic lake. J Fish Biol. 77(1): 80–97. doi: 10.1111/j.1095-8649.2010.02656.x
  • Eloranta AP, Knudsen R, Amundsen PA. 2013. Niche segregation of coexisting Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) constrains food web coupling in subarctic lakes. Freshwater Biol. 58(1):207–221. doi: 10.1111/fwb.12052
  • Eloranta AP, Kahilainen KK, Amundsen P-A, Knudsen R, Harrod C, Jones RI. 2015. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes. Ecol Evol. 5(8): 1664–1675. doi: 10.1002/ece3.1464
  • Fraser D, Adams CE, Huntingford FA. 1998. Trophic polymorphism among Arctic charr Salvelinus alpinus L., from Loch Ericht, Scotland. Ecol Freshw Fish 7(4):184–191. doi: 10.1111/j.1600-0633.1998.tb00185.x
  • Fredskild B. 1985. The Holocene vegetational development of Tugtuligssuaq and Qeqertat, northwest Greenland. Geoscience 14:1–20. Gregory-Eaves I, Demers JM, Kimpe L, Krümmel EM, Macdonald RW, Finney BP, Blais JM. 2007. Tracing salmon-derived nutrients and contaminants in freshwater food webs across a pronounced spawner density gradient. Environ Toxicol Chem. 26(6): 1100–1108. doi: 10.1897/06-402R.1
  • Gulseth OA, Nilssen KN. 2001. Life-History Traits of Charr, Salvelinus alpinus, from a High Arctic Watercourse on Svalbard. Arctic. 54(1):1–11. doi: 10.14430/arctic758
  • Hammar J. 2000. Cannibals and parasites: Conflicting regulators of bimodality in high latitude Arctic char, Salvelinus alpinus. Oikos 88(1):33–47. doi: 10.1034/j.1600-0706.2000.880105.x
  • Henriksen EH, Knudsen R, Kristoffersen R, Kuris AM, Lafferty KD, Siwertsson A, Amundsen PA. 2016. Ontogenetic dynamics of infection with Diphyllobothrium spp. cestodes in sympatric Arctic charr Salvelinus alpinus (L.) and brown trout Salmo trutta (L.). Hydrobiologia. 783(1):37–46. doi: 10.1007/s10750-015-2589-2
  • Jeppesen E, Lauridsen TL, Christoffersen KS, Landkildehus F, Geertz-Hansen P, Amsink SL, Søndergaard M, Davidson TA, Riget F. 2017. The structuring role of fish in Greenland lakes: an overview based on contemporary and paleoecological studies of 87 lakes from the low and the high Arctic. Hydrobiologia. 800(1): 99–113. doi: 10.1007/s10750-017-3279-z
  • Jørgensen L, Klemetsen A. 1995. Food resource partitioning of Arctic charr, Salvelinus alpinus (L.) and three-spined stickleback, Gasterosteus aculeatus (L.), in the littoral zone of lake Takvatn in northern Norway. Ecol Freshw Fish. 4(2):77–84. doi: 10.1111/j.1600-0633.1995.tb00120.x
  • Kahilainen KK, Thomas SM, Harrod C, Hayden B, Eloranta AP. 2019. Trophic ecology of piscivorous Arctic charr (Salvelinus alpinus (L.)) in subarctic lakes with contrasting food-web structures. Hydrobiologia. 840(1):227–243. doi: 10.1007/s10750-018-3845-z
  • Klobucar SL, Budy P. 2020. Trophic structure of apex fish communities in closed versus leaky lakes of arctic Alaska. Oecologia. 194:491–504. doi: 10.1007/s00442-020-04776-9
  • Knudsen R, Klemetsen A, Staldvik F. 1996. Parasites as indicators of individual feeding specialization in Arctic charr during winter in northern Norway. J Fish Biol. 48(6):1256–1265. doi: 10.1111/j.1095-8649.1996.tb01819.x
  • Knudsen R, Klemetsen A, Alekseyev S, Adams CE, Power M. 2016. The role of Salvelinus in contemporar studies of evolution, trophic ecology and anthropogenic change. Hydrobiologia. 783(1):1–9. doi: 10.1007/s10750-016-2999-9
  • Kortsch S, Primicerio R, Fossheim M, Dolgov AV. 2015. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc Royal Soc B. 282: 20151546. doi: 10.1098/rspb.2015.1546
  • Laske SM, Amundsen PA, Christoffersen KS, Erkinaro J, Guðbergsson G, Hayden B, Heino J, Holmgren K, Kahilainen KK, Lento J, Orell P, Östergren J, Power M, Rafikov R, Romakkaniemi A, Svenning M-A, Swanson H, Whitman M, Zimmerman CE. 2019. Circumpolar patterns of Arctic freshwater fish biodiversity: A baseline for monitoring. Freshwater Biol. 67(1): 176–193 doi: 10.1111/fwb.13405
  • Layman GA, Winemiller KO, Arrington DA, Jepsen DB. 2005. Body size and trophic position in a diverse tropical food webs. Ecology 86(9):2530–2535. doi: 10.1890/04-1098
  • McCann KS, Rasmussen JB, Umbanhowar J. 2005. The dynamics of spatially coupled food webs. Ecol Lett. 8(5):513–523. doi: 10.1111/j.1461-0248.2005.00742.x
  • McCarthy ID, Fraser D, Waldron S, Adams CE. 2004. A stable isotope analysis of trophic polymorphism among Arctic charr from Loch Ericht, Scotland. J Fish Biol. 65(5):1435–1440. doi: 10.1111/j.0022-1112.2004.00526.x
  • Murdoch A, Power M. 2013. The effect of lake morphometry on thermal habitat use and growth in Arctic charr populations: Implications for understanding climate-change impacts. Ecol Freshw Fish. 22(3):453–466. doi: 10.1111/eff.12039
  • Murdoch A, Power M, Klein G, Doidge W. 2015. Assessing the food web impacts of an anadromous Arctic charr introduction to a sub-Arctic watershed using stable isotopes. Fisheries Manag Ecol. 20(4):302–314. doi: 10.1111/fme.12012
  • O’Neill S. 1986. Competitive interactions between juvenile sockeye salmon (Oncorhynchus nerka) and limnetic zone sticklebacks (Gasterosteus aculeatus) [Master’s Thesis]. The University of British Columbia 101 p.
  • Persson L, Greenberg LA. 1990. Juvenile Competitive Bottlenecks: The Perch (Perca fluviatilis)-Roach (Rutilus rutilus) Interaction. Ecology. 71(1):44–56. doi: 10.2307/1940246
  • Post D, Pace M, Hairston N. 2000. Ecosystem size determines food-chain length in lakes. Nature. 405:1047–1049. doi: 10.1038/35016565
  • Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3):703–718. doi:10.1890/0012658(2002)083[0703:USITET]2.0.CO;2
  • Prchalová M, Kubečka J, Říha M, Mrkvička T, Vašek M, Jůza T, Kratochvíl M, Peterka J, Draštík V, Křížek J. 2009. Size selectivity of standardized multimesh gillnets in sampling coarse European species. Fish Res. 96(1):51–57. doi: 10.1016/j.fishres.2008.09.017
  • Quezada-Romegialli C, Jackson AL, Hayden B, Kahilainen KK, Lopes C, Harrod C. 2018. tRophicPosition, an r package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods Ecol Evol. 9(6):1592–1599. doi: 10.1111/2041-210X.13009
  • Quinlan R, Douglas MSV, Smol JP. 2005. Food web changes in arctic ecosystems related to climate warming. Glob Chang Biol. 11(8):1381–1386. doi: 10.1111/j.1365-2486.2005.00981.x
  • R Development Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/
  • Radtke R, Svenning M, Malone D, Klemetsen A, Ruzicka J, Fey D. 1996. Migrations in an extreme northern population of Arctic charr Salvelinus alpinus: insight from otolith micrchemistry. Mar Ecol Prog Ser. 136(1):13–23. doi: 10.3354/meps136013
  • Reiss M. 1988. Scaling of home range size: body size, metabolic needs and ecology. Trends Ecol Evol. 3(3):85–86. doi: 10.1016/0169-5347(88)90025-0
  • Riget F, Jeppesen E, Landkildehus F, Lauridsen, TL, Geertz-Hansen P, Christoffersen K, Sparholt H. 2000. Landlocked Arctic charr (Salvelinus alpinus) population structure and lake morphometry in Greenland - is there a connection? Polar Biol. 23:550–558. doi: 10.1007/s003000000120
  • Rolls RJ, Hayden B, Kahilainen KK. 2017. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish. Ecol Evol. 7(12):4109–4128. doi: 10.1002/ece3.2982
  • Romanuk TN, Hayward A, Hutchings, JA. 2011. Trophic level scales positively with body size in fishes. Global Ecol Biogeogr. 20(2):231–240. doi: 10.1111/j.1466-8238.2010.00579.x
  • Sánchez-Hernández J, Eloranta AP, Finstad AG, Amundsen PA. 2017. Community structure affects trophic ontogeny in a predatory fish. Ecol Evol. 7(1):358–367. doi: 10.1002/ece3.2600
  • Schriever TA, Williams DD. 2013. Ontogenetic and individual diet variation in amphibian larvae across an environmental gradient. Freshwater Biol. 58(2): 223–236. doi: 10.1111/fwb.12044
  • Simberloff D. 1982. The status of competition theory in ecology. Ann Zool Fenn. 19: 241–253.
  • Sparholt H. 1985. The population, survival, growth, reproduction and food of Arctic charr, Salvelinus alpinus (L.), in four unexploited lakes in Greenland. J Fish Biol. 26(3):313–330. doi: 10.1111/j.1095-8649.1985.tb04270.x
  • Vander Zanden MJ, Casselman JM, Rasmussen JB. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature. 401:464-467. doi: 10.1038/46762
  • Wootton RJ. 1985. A functional biology of sticklebacks. US: Springer 266 p.
Yıl 2022, Cilt: 8 Sayı: 2, 101 - 115, 26.08.2022
https://doi.org/10.17216/limnofish.1020722

Öz

Kaynakça

  • Adams C, Huntingford FA. 2002. Inherited differences in head allometry in polymorphic Arctic charr from Loch Rannoch, Scotland. J Fish Biol. 60(3):515–520. doi: 10.1111/j.1095-8649.2002.tb01680.x
  • Amundsen PA. 2016. Contrasting life-history strategies facilitated by cannibalism in a stunted Arctic charr population. Hydrobiologia 783(1):11-19. doi: 10.1007/s10750-015-2600-y
  • Belsley DA, Kuh E, Welsch RE. 1980. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. J R Stat Soc. 144:367–368.
  • Bennike O, Sørensen M, Fredskild B, Jakobsen BH, Böcher J, Amsinck SL, Jeppesen E, Andreasen C, Christiansen HH, Humlum O, Meltofte H, Røjle Christensen T, Elberling B, Forchhammer MC, Rasch M. 2008. Late Quaternary environmental and cultural changes in the Wollaston Forland Region, Northeast Greenland. In High-Arctic ecosystem dynamics in a changing climate: ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland. Adv Ecol Res. 40:45–79. doi: 10.1016/S0065-2504(07)00003-7
  • Bolnick DI, Ingram T, Stutz WE, Snowberg LK, Lau OL, Paull JS. 2010. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc Royal Soc. B 277: 1789–1797. doi: 10.1098/rspb.2010.0018
  • Brodersen J, Malmquist HJ, Landkildehus F, Lauridsen TL, Amsinck SL, Bjerring R, Sondergaard M, Johansson LS, Christoffersen KS, Jeppesen E. 2012. Short-and long term niche segregation and individual specialization of brown trout (Salmo trutta) in species poor Faroese lakes. Environ Biol Fish. 93(3):305–318. doi: 10.1007/s10641-011-9914-z
  • Connell JH. 1961. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamauls stellatus. Ecology. 42(4): 710-723. doi: 10.2307/1933500
  • Coumou D, Capua GD, Vavrus S, Wang L, Wang S. 2018. The influence of Arctic amplification on mid-latitude summer circulation. Nat Commun. 9: 2959. doi: 10.1038/s41467-018-05256-8
  • Davidsen JG, Power M, Knudsen R, Sjursen AD, Kjærstad G, Rønning L, Arnekleiv, JV. 2020. Marine trophic niche-use and life history diversity among Arctic charr Salvelinus alpinus in southwestern Greenland. J Fish Biol 96(3):681–692. doi: 10.1111/jfb.14261
  • Doenz CJ, Krähenbühl AK, Walker J, Seehausen O, Brodersen J. 2019. Ecological opportunity shapes a large Arctic charr species radiation. Proc Royal Soc B. 286: 20191992. doi: 10.1098/rspb.2019.1992
  • Eloranta AP, Kahilainen KK, Jones RI. 2010. Seasonal and ontogenetic shifts in diet of Arctic charr Salvelinus alpinus (L.) in a subarctic lake. J Fish Biol. 77(1): 80–97. doi: 10.1111/j.1095-8649.2010.02656.x
  • Eloranta AP, Knudsen R, Amundsen PA. 2013. Niche segregation of coexisting Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) constrains food web coupling in subarctic lakes. Freshwater Biol. 58(1):207–221. doi: 10.1111/fwb.12052
  • Eloranta AP, Kahilainen KK, Amundsen P-A, Knudsen R, Harrod C, Jones RI. 2015. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes. Ecol Evol. 5(8): 1664–1675. doi: 10.1002/ece3.1464
  • Fraser D, Adams CE, Huntingford FA. 1998. Trophic polymorphism among Arctic charr Salvelinus alpinus L., from Loch Ericht, Scotland. Ecol Freshw Fish 7(4):184–191. doi: 10.1111/j.1600-0633.1998.tb00185.x
  • Fredskild B. 1985. The Holocene vegetational development of Tugtuligssuaq and Qeqertat, northwest Greenland. Geoscience 14:1–20. Gregory-Eaves I, Demers JM, Kimpe L, Krümmel EM, Macdonald RW, Finney BP, Blais JM. 2007. Tracing salmon-derived nutrients and contaminants in freshwater food webs across a pronounced spawner density gradient. Environ Toxicol Chem. 26(6): 1100–1108. doi: 10.1897/06-402R.1
  • Gulseth OA, Nilssen KN. 2001. Life-History Traits of Charr, Salvelinus alpinus, from a High Arctic Watercourse on Svalbard. Arctic. 54(1):1–11. doi: 10.14430/arctic758
  • Hammar J. 2000. Cannibals and parasites: Conflicting regulators of bimodality in high latitude Arctic char, Salvelinus alpinus. Oikos 88(1):33–47. doi: 10.1034/j.1600-0706.2000.880105.x
  • Henriksen EH, Knudsen R, Kristoffersen R, Kuris AM, Lafferty KD, Siwertsson A, Amundsen PA. 2016. Ontogenetic dynamics of infection with Diphyllobothrium spp. cestodes in sympatric Arctic charr Salvelinus alpinus (L.) and brown trout Salmo trutta (L.). Hydrobiologia. 783(1):37–46. doi: 10.1007/s10750-015-2589-2
  • Jeppesen E, Lauridsen TL, Christoffersen KS, Landkildehus F, Geertz-Hansen P, Amsink SL, Søndergaard M, Davidson TA, Riget F. 2017. The structuring role of fish in Greenland lakes: an overview based on contemporary and paleoecological studies of 87 lakes from the low and the high Arctic. Hydrobiologia. 800(1): 99–113. doi: 10.1007/s10750-017-3279-z
  • Jørgensen L, Klemetsen A. 1995. Food resource partitioning of Arctic charr, Salvelinus alpinus (L.) and three-spined stickleback, Gasterosteus aculeatus (L.), in the littoral zone of lake Takvatn in northern Norway. Ecol Freshw Fish. 4(2):77–84. doi: 10.1111/j.1600-0633.1995.tb00120.x
  • Kahilainen KK, Thomas SM, Harrod C, Hayden B, Eloranta AP. 2019. Trophic ecology of piscivorous Arctic charr (Salvelinus alpinus (L.)) in subarctic lakes with contrasting food-web structures. Hydrobiologia. 840(1):227–243. doi: 10.1007/s10750-018-3845-z
  • Klobucar SL, Budy P. 2020. Trophic structure of apex fish communities in closed versus leaky lakes of arctic Alaska. Oecologia. 194:491–504. doi: 10.1007/s00442-020-04776-9
  • Knudsen R, Klemetsen A, Staldvik F. 1996. Parasites as indicators of individual feeding specialization in Arctic charr during winter in northern Norway. J Fish Biol. 48(6):1256–1265. doi: 10.1111/j.1095-8649.1996.tb01819.x
  • Knudsen R, Klemetsen A, Alekseyev S, Adams CE, Power M. 2016. The role of Salvelinus in contemporar studies of evolution, trophic ecology and anthropogenic change. Hydrobiologia. 783(1):1–9. doi: 10.1007/s10750-016-2999-9
  • Kortsch S, Primicerio R, Fossheim M, Dolgov AV. 2015. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc Royal Soc B. 282: 20151546. doi: 10.1098/rspb.2015.1546
  • Laske SM, Amundsen PA, Christoffersen KS, Erkinaro J, Guðbergsson G, Hayden B, Heino J, Holmgren K, Kahilainen KK, Lento J, Orell P, Östergren J, Power M, Rafikov R, Romakkaniemi A, Svenning M-A, Swanson H, Whitman M, Zimmerman CE. 2019. Circumpolar patterns of Arctic freshwater fish biodiversity: A baseline for monitoring. Freshwater Biol. 67(1): 176–193 doi: 10.1111/fwb.13405
  • Layman GA, Winemiller KO, Arrington DA, Jepsen DB. 2005. Body size and trophic position in a diverse tropical food webs. Ecology 86(9):2530–2535. doi: 10.1890/04-1098
  • McCann KS, Rasmussen JB, Umbanhowar J. 2005. The dynamics of spatially coupled food webs. Ecol Lett. 8(5):513–523. doi: 10.1111/j.1461-0248.2005.00742.x
  • McCarthy ID, Fraser D, Waldron S, Adams CE. 2004. A stable isotope analysis of trophic polymorphism among Arctic charr from Loch Ericht, Scotland. J Fish Biol. 65(5):1435–1440. doi: 10.1111/j.0022-1112.2004.00526.x
  • Murdoch A, Power M. 2013. The effect of lake morphometry on thermal habitat use and growth in Arctic charr populations: Implications for understanding climate-change impacts. Ecol Freshw Fish. 22(3):453–466. doi: 10.1111/eff.12039
  • Murdoch A, Power M, Klein G, Doidge W. 2015. Assessing the food web impacts of an anadromous Arctic charr introduction to a sub-Arctic watershed using stable isotopes. Fisheries Manag Ecol. 20(4):302–314. doi: 10.1111/fme.12012
  • O’Neill S. 1986. Competitive interactions between juvenile sockeye salmon (Oncorhynchus nerka) and limnetic zone sticklebacks (Gasterosteus aculeatus) [Master’s Thesis]. The University of British Columbia 101 p.
  • Persson L, Greenberg LA. 1990. Juvenile Competitive Bottlenecks: The Perch (Perca fluviatilis)-Roach (Rutilus rutilus) Interaction. Ecology. 71(1):44–56. doi: 10.2307/1940246
  • Post D, Pace M, Hairston N. 2000. Ecosystem size determines food-chain length in lakes. Nature. 405:1047–1049. doi: 10.1038/35016565
  • Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3):703–718. doi:10.1890/0012658(2002)083[0703:USITET]2.0.CO;2
  • Prchalová M, Kubečka J, Říha M, Mrkvička T, Vašek M, Jůza T, Kratochvíl M, Peterka J, Draštík V, Křížek J. 2009. Size selectivity of standardized multimesh gillnets in sampling coarse European species. Fish Res. 96(1):51–57. doi: 10.1016/j.fishres.2008.09.017
  • Quezada-Romegialli C, Jackson AL, Hayden B, Kahilainen KK, Lopes C, Harrod C. 2018. tRophicPosition, an r package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods Ecol Evol. 9(6):1592–1599. doi: 10.1111/2041-210X.13009
  • Quinlan R, Douglas MSV, Smol JP. 2005. Food web changes in arctic ecosystems related to climate warming. Glob Chang Biol. 11(8):1381–1386. doi: 10.1111/j.1365-2486.2005.00981.x
  • R Development Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/
  • Radtke R, Svenning M, Malone D, Klemetsen A, Ruzicka J, Fey D. 1996. Migrations in an extreme northern population of Arctic charr Salvelinus alpinus: insight from otolith micrchemistry. Mar Ecol Prog Ser. 136(1):13–23. doi: 10.3354/meps136013
  • Reiss M. 1988. Scaling of home range size: body size, metabolic needs and ecology. Trends Ecol Evol. 3(3):85–86. doi: 10.1016/0169-5347(88)90025-0
  • Riget F, Jeppesen E, Landkildehus F, Lauridsen, TL, Geertz-Hansen P, Christoffersen K, Sparholt H. 2000. Landlocked Arctic charr (Salvelinus alpinus) population structure and lake morphometry in Greenland - is there a connection? Polar Biol. 23:550–558. doi: 10.1007/s003000000120
  • Rolls RJ, Hayden B, Kahilainen KK. 2017. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish. Ecol Evol. 7(12):4109–4128. doi: 10.1002/ece3.2982
  • Romanuk TN, Hayward A, Hutchings, JA. 2011. Trophic level scales positively with body size in fishes. Global Ecol Biogeogr. 20(2):231–240. doi: 10.1111/j.1466-8238.2010.00579.x
  • Sánchez-Hernández J, Eloranta AP, Finstad AG, Amundsen PA. 2017. Community structure affects trophic ontogeny in a predatory fish. Ecol Evol. 7(1):358–367. doi: 10.1002/ece3.2600
  • Schriever TA, Williams DD. 2013. Ontogenetic and individual diet variation in amphibian larvae across an environmental gradient. Freshwater Biol. 58(2): 223–236. doi: 10.1111/fwb.12044
  • Simberloff D. 1982. The status of competition theory in ecology. Ann Zool Fenn. 19: 241–253.
  • Sparholt H. 1985. The population, survival, growth, reproduction and food of Arctic charr, Salvelinus alpinus (L.), in four unexploited lakes in Greenland. J Fish Biol. 26(3):313–330. doi: 10.1111/j.1095-8649.1985.tb04270.x
  • Vander Zanden MJ, Casselman JM, Rasmussen JB. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature. 401:464-467. doi: 10.1038/46762
  • Wootton RJ. 1985. A functional biology of sticklebacks. US: Springer 266 p.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Ignasi Arranz 0000-0002-1517-1713

Thomas Alexander Davidson 0000-0003-2326-1564

Lluís Benejam 0000-0002-2741-4858

Sandra Brucet 0000-0002-0494-1161

Javier Sánchez-hernández 0000-0001-9684-4774

Frank Landkildehus 0000-0001-8058-295X

Torben Lauridsen 0000-0003-0139-2395

Nestor Mazzeo 0000-0002-3090-2617

Nicolas Vidal 0000-0002-9200-5225

Korhan Özkan 0000-0003-1911-6508

Irene Gallego 0000-0002-3309-6788

Juliane Wischnewski 0000-0003-0828-3781

Rosemberg Menezes 0000-0001-9949-8221

Tserenpil Shurkhuu 0000-0001-8139-4897

Erik Jeppesen 0000-0002-0542-369X

Yayımlanma Tarihi 26 Ağustos 2022
Yayımlandığı Sayı Yıl 2022Cilt: 8 Sayı: 2

Kaynak Göster

APA Arranz, I., Davidson, T. A., Benejam, L., Brucet, S., vd. (2022). Interactive Effects of Lake Morphometry and Sticklebacks on the Trophic Position of Arctic charr, Salvelinus alpinus (L.), across Lakes in Western Greenland. Journal of Limnology and Freshwater Fisheries Research, 8(2), 101-115. https://doi.org/10.17216/limnofish.1020722