Derleme
BibTex RIS Kaynak Göster

Adipoz doku ve adipoz dokudan salgılanan bazı proteinler

Yıl 2017, Cilt: 5 Sayı: 2, 155 - 179, 25.12.2017
https://doi.org/10.24998/maeusabed.338105

Öz




Gelişmiş ve gelişmekte olan ülkelerde
yaşam şartlarının değişmesi nedeniyle hareketsizlik ve aşırı yağlı gıdalarla
beslenme sonucu obezite yaygın olarak görülmektedir.

Yapılan çalışmalarda obezitenin aslında düşük seviyede seyreden kronik bir
adipoz doku yangısı olduğu ve bu durumun obezite ilişkili sistemik metabolik
fonksiyon bozukluklarına katkıda bulunduğu ortaya
konmuştur.




 Adipoz dokudan salgılanan adipokinler, metabolik
ve/veya pro/antiinflamatuar etkilere sahip olan biyoaktif maddelerdir.
Obezitedeki adipoz doku disfonksiyonu nedeniyle bu adipokinlerin yapımı veya
salgılanmasının düzensizliği birçok hastalık komplikasyonları oluşturmakta,
yaşam koşullarının kalitesinin azalmasına ve mortalite oranının artmasına neden
olmaktadır. Bu derlemede, farklı adipoz doku yapıları, yapılarına göre değişen
fonksiyonları ve adipoz dokudan salgılanan pro/anti inflamatuar ve enerji
dengesinde etkili adipokinlerden bazıları hakkında bilgi verilmesi
amaçlanmıştır.





Kaynakça

  • 1. Ahima RS, Flier JS. 2000. Adipose tissue as an endocrine organ. Trends Endocrinol. Metabol. 11: 327-332.
  • 2. Appleton SL, Seaborn CJ, Visvanathan R, ve ark. 2013. Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype. Diabetes Care, 36: 2388-2394.
  • 3. Barnes MA, Carson MJ, Nair MG. 2015. Non-traditional cytokines: How catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system. Cytokine. 72: 210-219.
  • 4. Bastard JP, Jardel C, Bruckert E, et al. 2000. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J. Clin. Endocrinol. Metab. 85: 3338-3342.
  • 5. Birsoy K, Festuccia WT, Laplante M. 2013. A comparative perspective on lipid storage in animals. J. Cell Sci. 126: 1541-1552.
  • 6. Blüher M, Mantzoros CS. 2015. From leptin to other adipokines in health and disease: Facts and expectations at the beginning of the 21st century. Metabolism. 64: 131-145.
  • 7. Brestoff JR, Kim BS, Saenz SA, ve ark. 2015. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature.;519: 242-246.
  • 8. Brochu-Gaudreau K, Rehfeldt C, Blouin R, ve ark. 2010. Adiponectin action from head to toe. Endocrine. 37: 11-32.
  • 9. Choe SS, Huh JY, Hwang IJ, ve ark. 2016. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders. Front. Endocrinol (Lausanne) 7: 30.
  • 10. Coelho M, Oliveira T, Fernandes R. 2013. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 9: 191-200.
  • 11. Cypess AM, Lehman S, Williams G, ve ark. 2009. Identification and Importance of Brown Adipose Tissue in Adult Humans. N. Engl. J. Med. 360: 1509-1517.
  • 12. Dalmas E, Venteclef N, Caer C, et alve ark. 2014. T cell-derived IL-22 amplifies IL-1beta-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes. 2014;63: 1966-1977.
  • 13. Denis G V., Obin MS. 2013. Metabolically healthy obesity: Origins and implications. Mol. Aspects Med. 34: 59-70.
  • 14. DiSpirito JR, Mathis D. 2015. Immunological contributions to adipose tissue homeostasis. Semin. Immunol. 27: 315-321.
  • 15. Dunmore SJ, Brown JEP. 2013. The role of adipokines in beta-cell failure of type 2 diabetes. J Endocrinol. 216: T37-45.
  • 16. Elgazar-Carmon V, Rudich A, Hadad N, ve ark. 2008. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J. Lipid Res. 49: 1894-1903.
  • 17. Fasshauer M, Blüher M. 2015. Adipokines in health and disease. Trends Pharmacol. Sci. 36: 461-470.
  • 18. Fasshauer M, Blüher M, Stumvoll M. 2014. Adipokines in gestational diabetes. Lancet Diabetes Endocrinol. 2:488-499.
  • 19. Feuerer M, Herrero L, Cipolletta D, ve ark. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15: 930-939.
  • 20. Fried SK, Bunkin DA, Greenberg AS. 1998. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: Depot difference and regulation by glucocorticoid. J. Clin. Endocrinol Metab. 83: 847-850.
  • 21. Fried SK, Ricci MR, Russell CD, ve ark.. 2000. Regulation of leptin production in humans. J. Nutr; 130: 3127S-3131S.
  • 22. Frontini A, Vitali A, Perugini J, ve ark. 2013. White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochim. Biophys. Acta – Mol. Cell Biol. Lipids. 1831: 950-959.
  • 23. Fu Y, Luo N, Klein RL, ve ark. 2005. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 46: 1369-1379.
  • 24. Gaggini M, Saponaro C, Gastaldelli A. 2015. Not all fats are created equal: Adipose vs. ectopic fat, implication in cardiometabolic diseases. Horm. Mol. Biol. Clin. Investig. 22: 7-18.
  • 25. Golubović MV, Dimić D, Antić S, ve ark. 2013. Relationship of adipokine to insulin sensitivity and glycemic regulation in obese women--the effect of body weight reduction by caloric restriction. Vojnosanit. Pregl. 70: 284-291.
  • 26. Gray SL, Vidal-Puig AJ. 2007. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr. Rev. 65(Suppl.1): 7–12.
  • 27. Gregoire FM, Smas CM, Sul HS. 1998. Understanding adipocyte differentiation. Physiol. Rev. 78: 783-809.
  • 28. Han CY, Tang C, Guevara ME, ve ark. 2016. Serum amyloid A impairs the antiinflammatory properties of HDL. J Clin. Invest. 126: 266-281.
  • 29. Hara K, Boutin P, Mori Y, ve ark. 2002. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 51: 536-540.
  • 30. Holland WL, Adams AC, Brozinick JT, ve ark. 2013. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 17: 790-797.
  • 31. Houseknecht KL, Baile CA, Matteri RL, ve ark. The Biology of Leptin: A Review. 1998. J. Anim. Sci. 76: 1405-1420.
  • 32. Ibrahim MM. 2010. Subcutaneous and visceral adipose tissue: structural and functional differences, Obes. Rev., 11: 11–18.
  • 33. Jespersen NZ, Larsen TJ, Peijs L, et al. 2013. A classical brown adipose tissue mrna signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17: 798-805.
  • 34. Kershaw EE, Flier JS. 2004. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89: 2548-2556.
  • 35. Kim JY, Van De Wall E, Laplante M, et al. 2007. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117: 2621-2637.
  • 36. Klöting N, Fasshauer M, Dietrich A, ve ark. 2010. Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab. 299: E506-E515.
  • 37. Kobayashi H, Ouchi N, Kihara S, ve ark. 2004. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ. Res. 94: e27-e31.
  • 38. Larson MA, Wei SH, Weber A, ve ark. 2003. Induction of human mammary-associated serum amyloid A3 expression by prolactin or lipopolysaccharide. Biochem. Biophys. Res. Commun. 301: 1030-1037.
  • 39. Lee MH, Klein RL, El-Shewy HM, ve ark. 2008. The adiponectin receptors AdipoR1 and AdipoR2 activate ERK1/2 through a Src/Ras-dependent pathway and stimulate cell growth. Biochemistry. 47: 11682-11692.
  • 40. Lee M-W, Odegaard JI, Mukundan L, ve ark. 2015. Activated Type 2 Innate Lymphoid Cells Regulate Beige Fat Biogenesis. Cell. 160: 74-87.
  • 41. Lee YS, Li P, Huh JY, ve ark. 2011. Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes. 60: 2474-2483.
  • 42. LeRoith D, Novosyadlyy R, Gallagher EJ, ve ark. 2008. Obesity and type 2 diabetes are associated with an increased risk of developing cancer and a worse prognosis; epidemiological and mechanistic evidence. Exp. Clin. Endocrinol. Diabetes. 116 (Suppl):S4-S6.
  • 43. Li Z, Yang S, Lin H, ve ark. 2003. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 37: 343-350.
  • 44. Liang H, Yin B, Zhang H, et al. 2008. Blockade of tumor necrosis factor (TNF) receptor type 1-mediated TNF-{alpha} signaling protected Wistar rats from diet-induced obesity and insulin resistance. Endocrinology. 149: 2943-2951.
  • 45. Lumeng CN, Bodzin JL, Saltiel AR. 2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117: 175-184.
  • 46. Makki K, Froguel P, Wolowczuk I. 2013. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013:139239.
  • 47. Mantzoros CS, Magkos F, Brinkoetter M, ve ark. 2011. Leptin in human physiology and pathophysiology. Am. J. Endocrinol. Metab. 301: E567-E584.
  • 48. Minokoshi Y, Kim Y-B, Peroni OD, ve ark. 2002. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 415: 339-343.
  • 49. Montague CT, O’Rahilly S. 2000. The perils of portliness: Causes and consequences of visceral adiposity. Diabetes. 49: 883-888.
  • 50. Motoshima H, Wu X, Sinha MK, ve ark. 2002. Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: Effects of insulin and rosiglitazone. J. Clin. Endocrinol. Metab. 87: 5662-5667.
  • 51. Nakata M, Yamamoto S, Okada T, ve ark. 2016. IL-10 gene transfer upregulates arcuate POMC and ameliorates hyperphagia, obesity and diabetes by substituting for leptin. Int. J. Obes. 40: 425-433.
  • 52. Nishimura S, Manabe I, Nagasaki M, ve ark. 2009. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15: 914-920.
  • 53. Oswal A, Yeo G. 2010. Leptin and the Control of Body Weight: A Review of Its Diverse Central Targets, Signaling Mechanisms, and Role in the Pathogenesis of Obesity. Obesity. 18: 221-229.
  • 54. Ouchi N, Parker JL, Lugus JJ, ve ark. 2011. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11: 85-97.
  • 55. Ouchi N, Kobayashi H, Kihara S, ve ark. 2004. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 279: 1304-1309.
  • 56. Papathanassoglou E, El-Haschimi K, Li XC, ve ark. 2006. Leptin receptor expression and signaling in lymphocytes: kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J. Immunol. 176: 7745-7752.
  • 57. Paz-Filho G, Wong ML, Licinio J. 2011. Ten years of leptin replacement therapy. Obes. Rev. 12: e315-e323.
  • 58. Pricola KL, Kuhn NZ, Haleem-Smith H, ve ark. 2009. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J. Cell Biochem. 108: 577-588.
  • 59. Proença ARG, Sertié RAL, Oliveira AC, ve ark. 2014. New concepts in white adipose tissue physiology. Brazilian J. Med. Biol. Res. 47:192-205.
  • 60. Puigserver P, Wu Z, Park CW, ve ark. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 92: 829-839.
  • 61. Reynisdottir S, Dauzats M, Thörne A, ve ark. 1997. Comparison of hormone-sensitive lipase activity in visceral and subcutaneous human adipose tissue. J. Clin. Endocrinol. Metab. 82: 4162-4166.
  • 62. Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI, ve ark. 2010. IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc. Natl. Acad. Sci. 107: 22617-22622.
  • 63. Rocha VZ, Folco EJ, Sukhova G, ve ark. 2008. Interferon-γ, a Th1 cytokine, regulates fat inflammation: A role for adaptive immunity in obesity. Circ. Res.;103: 467-476.
  • 64. Romanatto T, Roman EA, Arruda AP, ve ark. 2009. Deletion of tumor necrosis factor-α receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis. J. Biol. Chem. 284: 36213-36222.
  • 65. Rosenwald M, Perdikari A, Rülicke T, ve ark. 2013. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15: 659-667.
  • 66. Sanada Y, Yamamoto T, Satake R, ve ark. 2016. Serum amyloid A3 gene expression in adipocytes is an indicator of the interaction with macrophages. Sci. Rep.6: 38697.
  • 67. Schäffler A, Schölmerich J, Salzberger B. 2007.Adipose tissue as an immunological organ: Toll-like receptors, C1q/TNFs and CTRPs. Trends Immunol. 28: 393-399.
  • 68. Sharp LZ, Shinoda K, Ohno H, ve ark. 2012. Human BAT Possesses Molecular Signatures That Resemble Beige/Brite Cells. PLoS One.7: e49452.
  • 69. Sommer G, Weise S, Kralisch S, ve ark. 2008. The adipokine SAA3 is induced by interleukin-1β in mouse adipocytes. J. Cell. Biochem. 104: 2241-2247.
  • 70. Sopasakis VR, Sandqvist M, Gustafson B, ve ark. 2004. High local concentrations and effects on differentiation implicate interleukin-6 as a paracrine regulator. Obes. Res. 12: 454-460.
  • 71. Stumvoll M, Tschritter O, Fritsche A, ve ark. 2002. Association of the T-G polymorphism in adiponectin (Exon 2) with obesity and insulin sensitivity: Interaction with family history of type 2 diabetes. Diabetes. 51: 37-41.
  • 72. Sun K, Park J, Gupta OT, ve ark. 2014. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 5: 3485.
  • 73. Sun K, Kusminski CCM, Scherer PEP. 2011. Adipose tissue remodeling and obesity. J. Clin. Invest. 121: 2094-2101.
  • 74. Tack CJ, Stienstra R, Joosten LAB, ve ark. 2012. Inflammation links excess fat to insulin resistance: The role of the interleukin-1 family. Immunol. Rev. 249: 239-252.
  • 75. Talukdar S, Oh DY, Bandyopadhyay G, et al. 2012. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18: 1407-1412.
  • 76. Tchkonia T, Corkey BE, Kirkland JL. 2006. Current Views of the Fat Cell as an Endocrine Cell: Lipotoxicity. Bray GA, Ryan DH, ed. Overweight and the Metabolic Syndrome: From Bench to Bedside. Boston, MA: Springer US, s. 105-123.
  • 77. Tchkonia T, Morbeck DE, Von Zglinicki T, ve ark. 2010. Fat tissue, aging, and cellular senescence. Aging Cell. 9: 667-684.
  • 78. Trayhurn P, Wood IS. 2004. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 92: 347-355.
  • 79. Tseng Y-H, Kokkotou E, Schulz TJ, ve ark. 2008. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 454:1000-1004.
  • 80. Uhlar CM, Whitehead AS. 1999. Serum amyloid A, the major vertebrate acute-phase reactant. Eur. J. Biochem. 265: 501-523.
  • 81. Unger RH, Clark GO, Scherer PE, ve ark. 2010. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta – Mol. Cell Biol. Lipids. 1801: 209-214.
  • 82. Uysal KT, Wiesbrock SM, Marino MW, ve ark. 1997. Protection from obesity-induced insulin resistance in mice lacking TNF- alpha function. Nature. 389: 610-614.
  • 83. Van Gaal LF, Mertens IL, De Block CE. 2006. Mechanisms linking obesity with cardiovascular disease. Nature. 444: 875-880.
  • 84. Van Hall G, Steensberg A, Sacchetti M, et al. 2003. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 88: 3005-3010.
  • 85. Van Stijn CMW, Kim J, Lusis AJ, ve ark. 2015. Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response. FASEB J. 29: 636-649.
  • 86. Virtanen KA, Lidell ME, Orava J, ve ark. 2009 Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360: 1518-1525.
  • 87. Voulgari C, Tentolouris N, Dilaveris P, ve ark. 2011. Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals. J. Am. Coll. Cardiol. 58: 1343-1350.
  • 88. Vozarova B, Weyer C, Hanson K, ve ark. 2001. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes. Res. 9: 414-417.
  • 89. Waki H, Yamauchi T, Kamon J, et al. 2003. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J. Biol. Chem. 278: 40352-40363.
  • 90. Wang QA, Tao C, Gupta RK, ve ark. 2013.Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19: 1338-1344.
  • 91. Weisberg SP, McCann D, Desai M, ve ark. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112: 1796-1808.
  • 92. Wensveen FM, Valentić S, Šestan M, ve ark. 2015. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur. J. Immunol. 45: 2446-2456.
  • 93. Wieckowska A, Papouchado BG, Li Z, ve ark. 2008. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am. J. Gastroenterol. 103: 1372-1379.
  • 94. Winer S, Chan Y, Paltser G, ve ark. 2009. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15: 921-929.
  • 95. Wu D, Molofsky AB, Liang H-E, ve ark. 2011. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 332: 243-247.
  • 96. Xue Y, Petrovic N, Cao R, ve ark. 2009. Hypoxia-ındependent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9: 99-109.
  • 97. Yamauchi T, Kamon J, Ito Y, ve ark. 2003. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 423: 762-769.
  • 98. Yang RZ, Lee MJ, Hu H, ve ark. 2006. Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med. 3: e287.
  • 99. Yeop Han C, Kargi AY, Omer M, ve ark. 2010. Differential effect of saturated and unsaturated free fatty acids on the generation of monocyte adhesion and chemotactic factors by adipocytes: Dissociation of adipocyte hypertrophy from inflammation. Diabetes. 59: 386-396.
  • 100. Zhang Y, Proenca R, Maffei M, ve ark. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature. 372: 425-432.
Toplam 100 adet kaynakça vardır.

Ayrıntılar

Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Şule Demirci

Cennet Gün Bu kişi benim

Yayımlanma Tarihi 25 Aralık 2017
Gönderilme Tarihi 13 Eylül 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 2

Kaynak Göster

APA Demirci, Ş., & Gün, C. (2017). Adipoz doku ve adipoz dokudan salgılanan bazı proteinler. Mehmet Akif Ersoy University Journal of Health Sciences Institute, 5(2), 155-179. https://doi.org/10.24998/maeusabed.338105
AMA Demirci Ş, Gün C. Adipoz doku ve adipoz dokudan salgılanan bazı proteinler. Mehmet Akif Ersoy University Journal of Health Sciences Institute. Aralık 2017;5(2):155-179. doi:10.24998/maeusabed.338105
Chicago Demirci, Şule, ve Cennet Gün. “Adipoz Doku Ve Adipoz Dokudan salgılanan Bazı Proteinler”. Mehmet Akif Ersoy University Journal of Health Sciences Institute 5, sy. 2 (Aralık 2017): 155-79. https://doi.org/10.24998/maeusabed.338105.
EndNote Demirci Ş, Gün C (01 Aralık 2017) Adipoz doku ve adipoz dokudan salgılanan bazı proteinler. Mehmet Akif Ersoy University Journal of Health Sciences Institute 5 2 155–179.
IEEE Ş. Demirci ve C. Gün, “Adipoz doku ve adipoz dokudan salgılanan bazı proteinler”, Mehmet Akif Ersoy University Journal of Health Sciences Institute, c. 5, sy. 2, ss. 155–179, 2017, doi: 10.24998/maeusabed.338105.
ISNAD Demirci, Şule - Gün, Cennet. “Adipoz Doku Ve Adipoz Dokudan salgılanan Bazı Proteinler”. Mehmet Akif Ersoy University Journal of Health Sciences Institute 5/2 (Aralık 2017), 155-179. https://doi.org/10.24998/maeusabed.338105.
JAMA Demirci Ş, Gün C. Adipoz doku ve adipoz dokudan salgılanan bazı proteinler. Mehmet Akif Ersoy University Journal of Health Sciences Institute. 2017;5:155–179.
MLA Demirci, Şule ve Cennet Gün. “Adipoz Doku Ve Adipoz Dokudan salgılanan Bazı Proteinler”. Mehmet Akif Ersoy University Journal of Health Sciences Institute, c. 5, sy. 2, 2017, ss. 155-79, doi:10.24998/maeusabed.338105.
Vancouver Demirci Ş, Gün C. Adipoz doku ve adipoz dokudan salgılanan bazı proteinler. Mehmet Akif Ersoy University Journal of Health Sciences Institute. 2017;5(2):155-79.