Araştırma Makalesi
BibTex RIS Kaynak Göster

Krom ve Seryum İçeren Titanyum-Sütunlu Bentonit Katalizörlerin Sentezi, Karakterizasyonu ve Katalitik Performansı

Yıl 2017, Cilt: 8 Sayı: 1, 66 - 77, 03.04.2017

Öz

Bu çalışmada, krom ve seryum/krom-titanyum-sütunlu
bentonit katalizörler sentez sonrası emdirme yöntemi ile hazırlanmıştır.
Katalizörlerin fizikokimyasal özellikleri SEM/EDS, XRD, N2-adsorpsiyon/desorpsiyon,
TGA/DTA ve FTIR analiz teknikleri ile incelenmiş ve katalitik performansları
diklofenakın katalitik ıslak peroksit oksidasyonunda değerlendirilmiştir.
Titanyum-sütunlu bentonit katalizörün XRD deseninde katman bozulmalı yapının oluştuğu,
krom ve seryum/krom emdirmeden sonrada katman bozulmalı yapının korunduğu
görülmüştür. Ayrıca Titanyum-sütunlu bentonit katalizörün XRD deseninde kristalin faz olarak sadece TiO2’nin anataz fazı
gözlenmiş
, krom ve seryum/krom emdirilmiş örneklerde ise
anataz fazı ile birlikte
Cr2O3
ve/veya CeO2
fazları da gözlenmiştir. Kimyasal analiz sonuçları XRD sonuçlarını doğrulamıştır. 77
K
N2-adsorpsiyon/desorpsiyon
izoterm analizlerinden
yüksek bağıl basınçlarda
plato oluşmayan ve H3 Tip histerezis içeren Tip
IIb.
izotermi
elde edilmiştir. Titanyum-sütunlu bentonit katalizörün
yüzey özelliklerinin
krom ve seryum/krom
emdirmeden sonra azaldığı görülmüştür. FTIR
spektrumlarında, Ti-sütun açıcılar ile sütunlandırma ile Bronsted ve Lewis pik
şiddetlerinde artma gözlenmişken, seryum/krom emdirme ile bu etkinin daha da
arttığı görülmüştür.
Katalitik
performans çalışmaları, Titanyum-sütunlu bentonit katalizörün katalitik
aktivitesinin krom emdirme ile azaldığını, seryum/krom emdirme ile arttığını
göstermiştir. 

Kaynakça

  • Basoglu, F. T., Balci, S. (2016). Catalytic properties and activity of copper and silver containing Al-pillared bentonite for CO oxidation. Journal of Molecular Structure, 1106: 382-389.
  • Bineesh, K.V., Kim, M.I., Lee, G.H., Selvaraj, M., Park, D.W.(2013). Catalytic performance of vanadia-doped alumina-pillared clay for selective oxidation of H2S. Applied Clay Science, 74; 127-134.
  • Boxiong, S., Hongqing, M., Chuan, H., & Xiaopeng, Z. (2014). Low temperature NH3–SCR over Zr and Ce pillared clay based catalysts. Fuel Processing Technology 119: 121-129.
  • Carriazo, J.G., Moreno-Forero, M., Molina, R.A., Moreno, S. (2010). Incorporation of titanium and titanium–iron species inside a smectite-type mineral for photocatalysis. Applied Clay Science, 50; 401-408.
  • Chen, D., Zhu, Q., Zhou, F., Deng, X., Li, F. (2012). Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite. Journal of Hazardous Materials 235– 236: 186– 193.
  • Cheng, H., Song, D., Liu, H., Qu, J. (2015). Permanganate oxidation of diclofenac: The pH-dependent reaction kinetics and a ring-opening mechanism. Chemosphere, 136; 297-304.
  • Chmielarz L., Kustrowski P., Zbroja M., Gil-Knap B., Datka J., Dziembaj R (2004). SCR of NO by NH3 on alumina or titania pillared montmorillonite modified with Cu or Co: Part II. Temperature programmed studies. Applied Catalysis B: Environmental 53, 47-61.
  • Chmielarz, L., Piwowarska, Z., Kuśtrowski, P., Węgrzyn, A., Gil, B., Kowalczyk, A., Dudek, B., Dziembaj, R., Michalik, M. (2011). Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process. Applied Clay Science 53: 164-173.
  • Ding, Z., Kloprogge, J.T., Frost, R.L. (2001). Porous clays and pillared clays-based catalysts. Part 2: A review of the catalytic and molecular sieve applications. Journal of Porous Materials, 8; 273–293.
  • Figueras, F. (1988). Pillared clays as catalysis, Catalysis Review Science Engineering. 30: 457-499.
  • Gil A., Korili S.A., Trujillano R., Vicente M.A., Pillared Clays and Related Catalysts, Springer, 2010.
  • Gmurek, M., Olak-Kucharczyk, M., Ledakowicz, S. (2017). Photochemical decomposition of endocrine disrupting compounds–A review. Chemical Engineering Journal 310:437-456.
  • González-Rodríguez, B., Trujillano, R., Rives, V., Vicente, M. A., Gil, A., Korili, S. A. (2015). Structural, textural and acidic properties of Cu-, Fe- and Cr-doped Ti-pillared montmorillonites. Applied Clay Science, 118: 124-130.
  • Hofmann, J., Freier, U., Wecks, M., Hohmann, S. (2007). Degradation of diclofenac in water by heterogeneous catalytic oxidation with H2O2. Applied Catalysis B: Environmental, 70(1): 447-451.
  • http://www.webmineral.com/MySQL/xray.php
  • Jagtap, N., Ramaswamy, V. (2006). Oxidation of aniline over titania pillared montmorillonite clays.Applied Clay Science 33: 89–98.
  • Khalfallah Boudali, L.K., Ghorbel, A., Grange, P. (2006). SCR of NO by NH3 over V2O5 supported sulfated Ti-pillared clay: Reactivity and reducibility of catalysts. Applied Catalysis A: General, 305: 7–14.
  • Liang X, Qi F, Liu P, Wei G, Su X, Ma L, He H, Lin X, Xi Y, Zhu Y, Zhu R. (2016).Performance of Ti-pillared montmorillonite supported Fe catalysts for toluene oxidation: The effect of Fe on catalytic activity. Applied Clay Science, 132-133: 96-104.
  • Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M. (2004). Characterization of porous solids and powders: Surface area pore size and density. Kluwer Academic Publishers, Dordrecht, The Nertherlands, 213-228.
  • Lu, G., Li, X., Qu, Z., Zhao, Q., Zhao, L., Chen, G. (2011). Copper-ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene. Chemical Engineering Journal, 168: 1128–1133.
  • Madejová J. (2003). FTIR Techniques in Clay Mineral Studies. Vibrational Spectroscopy, 31:1-10.
  • Michalik-Zym, A., Dula, R., Duraczyńska, D., Kryściak-Czerwenka, J., Machej, T., Socha, R. P., Wisła-Walsh, E. (2015). Active, selective and robust Pd and/or Cr catalysts supported on Ti-, Zr-or [Ti, Zr]-pillared montmorillonites for destruction of chlorinated volatile organic compounds. Applied Catalysis B: Environmental, 174: 293-307.
  • Na, P., Zhao, B., Gu, L., Liu, J., Na, J. (2009). Deep desulfurization of model gasoline over photoirradiated titanium-pillared montmorillonite. Journal of Physics and Chemistry of Solids, 70: 1465–1470.
  • Omar, T.F.T., Ahmad, A., Aris, A. Z., Yusoff, F. M. (2016). Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds. TrAC Trends in Analytical Chemistry, 85: 241-259.
  • Rouquerol, F., Rouquerol, J., Sing, K. (1999). Adsorption by powders and porous solids. Academic Press, London, pp. 165-234.
  • Shen B., Chen J., Yue S. (2015). Removal of elemental mercury by titanium pillared clay impregnated with potassium iodine. Microporous Mesoporous Materials, 203: 216–223.
  • Smith, B. (1998). Infrared Spectral Interpretation A Systematic Approch, CRC Press, New York.
  • Tapia-Orozco, N., Ibarra-Cabrera, R., Tecante, A., Gimeno, M., Parra, R., Garcia-Arrazola, R. (2016). Removal strategies for endocrine disrupting chemicals using cellulose-based materials as adsorbents: A review. Journal of Environmental Chemical Engineering, 4(3): 3122-3142.
  • Tomul, F. (2011). Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite. Applied Surface Science, 258(5): 1836-1848.
  • Tomul, F. (2012). Influence of synthesis conditions on the physicochemical properties and catalytic activity of Fe/Cr-pillared bentonites. Journal of Nanomaterials, 2012: 3.
  • Tomul, F., Basoglu, F. T., Canbay, H. (2016). Determination of adsorptive and catalytic properties of copper, silver and iron contain titanium-pillared bentonite for the removal bisphenol A from aqueous solution. Applied Surface Science, 360: 579-593.
  • Tomul, F., Karakuş, D. (2016). Naproksenin Katalitik Islak Peroksit Oksidasyonu. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7.2: 125-132.
  • Vicente, M.A., Gil, A., Bergaya, F., 2013. Pillared clays and clay minerals. In: Bergaya, F., Lagaly, G. (Eds.), Handbook of Clay Science, Second Edition, Part A: Fundamentals. Elsevier, Amsterdam, pp. 523-557.
  • Yang, S., Huang, Q., Zhou, R. (2014). Influence of interactions between chromium and cerium on catalytic performances of CrO x–CeO2/Ti-PILC catalysts for deep oxidation of n-butylamine. Chinese Science Bulletin, 59(31): 3987-3992.
  • Yuan, L., Xiaojiao, C., Jingwei, G., Shimin, Z., Ping, N. (2015). Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation. Applied Surface Science, 324: 179–187.
  • Zhang, J., Zhang, S., Cai, W., Zhong, Q. (2013). The characterization of CrCe-doped on TiO2-pillared clay nanocomposites for NO oxidation and the promotion effect of CeOx. Applied Surface Science, 268: 535-540.
  • Zuo, S., Ding, M., Tong, J., Feng, L., Qi, C. (2015). Study on the preparation and characterization of a titanium-pillared clay-supported CrCe catalyst and its application to the degradation of a low concentration of chlorobenzene. Applied Clay Science, 105–106: 118–123.
Yıl 2017, Cilt: 8 Sayı: 1, 66 - 77, 03.04.2017

Öz

Kaynakça

  • Basoglu, F. T., Balci, S. (2016). Catalytic properties and activity of copper and silver containing Al-pillared bentonite for CO oxidation. Journal of Molecular Structure, 1106: 382-389.
  • Bineesh, K.V., Kim, M.I., Lee, G.H., Selvaraj, M., Park, D.W.(2013). Catalytic performance of vanadia-doped alumina-pillared clay for selective oxidation of H2S. Applied Clay Science, 74; 127-134.
  • Boxiong, S., Hongqing, M., Chuan, H., & Xiaopeng, Z. (2014). Low temperature NH3–SCR over Zr and Ce pillared clay based catalysts. Fuel Processing Technology 119: 121-129.
  • Carriazo, J.G., Moreno-Forero, M., Molina, R.A., Moreno, S. (2010). Incorporation of titanium and titanium–iron species inside a smectite-type mineral for photocatalysis. Applied Clay Science, 50; 401-408.
  • Chen, D., Zhu, Q., Zhou, F., Deng, X., Li, F. (2012). Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite. Journal of Hazardous Materials 235– 236: 186– 193.
  • Cheng, H., Song, D., Liu, H., Qu, J. (2015). Permanganate oxidation of diclofenac: The pH-dependent reaction kinetics and a ring-opening mechanism. Chemosphere, 136; 297-304.
  • Chmielarz L., Kustrowski P., Zbroja M., Gil-Knap B., Datka J., Dziembaj R (2004). SCR of NO by NH3 on alumina or titania pillared montmorillonite modified with Cu or Co: Part II. Temperature programmed studies. Applied Catalysis B: Environmental 53, 47-61.
  • Chmielarz, L., Piwowarska, Z., Kuśtrowski, P., Węgrzyn, A., Gil, B., Kowalczyk, A., Dudek, B., Dziembaj, R., Michalik, M. (2011). Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process. Applied Clay Science 53: 164-173.
  • Ding, Z., Kloprogge, J.T., Frost, R.L. (2001). Porous clays and pillared clays-based catalysts. Part 2: A review of the catalytic and molecular sieve applications. Journal of Porous Materials, 8; 273–293.
  • Figueras, F. (1988). Pillared clays as catalysis, Catalysis Review Science Engineering. 30: 457-499.
  • Gil A., Korili S.A., Trujillano R., Vicente M.A., Pillared Clays and Related Catalysts, Springer, 2010.
  • Gmurek, M., Olak-Kucharczyk, M., Ledakowicz, S. (2017). Photochemical decomposition of endocrine disrupting compounds–A review. Chemical Engineering Journal 310:437-456.
  • González-Rodríguez, B., Trujillano, R., Rives, V., Vicente, M. A., Gil, A., Korili, S. A. (2015). Structural, textural and acidic properties of Cu-, Fe- and Cr-doped Ti-pillared montmorillonites. Applied Clay Science, 118: 124-130.
  • Hofmann, J., Freier, U., Wecks, M., Hohmann, S. (2007). Degradation of diclofenac in water by heterogeneous catalytic oxidation with H2O2. Applied Catalysis B: Environmental, 70(1): 447-451.
  • http://www.webmineral.com/MySQL/xray.php
  • Jagtap, N., Ramaswamy, V. (2006). Oxidation of aniline over titania pillared montmorillonite clays.Applied Clay Science 33: 89–98.
  • Khalfallah Boudali, L.K., Ghorbel, A., Grange, P. (2006). SCR of NO by NH3 over V2O5 supported sulfated Ti-pillared clay: Reactivity and reducibility of catalysts. Applied Catalysis A: General, 305: 7–14.
  • Liang X, Qi F, Liu P, Wei G, Su X, Ma L, He H, Lin X, Xi Y, Zhu Y, Zhu R. (2016).Performance of Ti-pillared montmorillonite supported Fe catalysts for toluene oxidation: The effect of Fe on catalytic activity. Applied Clay Science, 132-133: 96-104.
  • Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M. (2004). Characterization of porous solids and powders: Surface area pore size and density. Kluwer Academic Publishers, Dordrecht, The Nertherlands, 213-228.
  • Lu, G., Li, X., Qu, Z., Zhao, Q., Zhao, L., Chen, G. (2011). Copper-ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene. Chemical Engineering Journal, 168: 1128–1133.
  • Madejová J. (2003). FTIR Techniques in Clay Mineral Studies. Vibrational Spectroscopy, 31:1-10.
  • Michalik-Zym, A., Dula, R., Duraczyńska, D., Kryściak-Czerwenka, J., Machej, T., Socha, R. P., Wisła-Walsh, E. (2015). Active, selective and robust Pd and/or Cr catalysts supported on Ti-, Zr-or [Ti, Zr]-pillared montmorillonites for destruction of chlorinated volatile organic compounds. Applied Catalysis B: Environmental, 174: 293-307.
  • Na, P., Zhao, B., Gu, L., Liu, J., Na, J. (2009). Deep desulfurization of model gasoline over photoirradiated titanium-pillared montmorillonite. Journal of Physics and Chemistry of Solids, 70: 1465–1470.
  • Omar, T.F.T., Ahmad, A., Aris, A. Z., Yusoff, F. M. (2016). Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds. TrAC Trends in Analytical Chemistry, 85: 241-259.
  • Rouquerol, F., Rouquerol, J., Sing, K. (1999). Adsorption by powders and porous solids. Academic Press, London, pp. 165-234.
  • Shen B., Chen J., Yue S. (2015). Removal of elemental mercury by titanium pillared clay impregnated with potassium iodine. Microporous Mesoporous Materials, 203: 216–223.
  • Smith, B. (1998). Infrared Spectral Interpretation A Systematic Approch, CRC Press, New York.
  • Tapia-Orozco, N., Ibarra-Cabrera, R., Tecante, A., Gimeno, M., Parra, R., Garcia-Arrazola, R. (2016). Removal strategies for endocrine disrupting chemicals using cellulose-based materials as adsorbents: A review. Journal of Environmental Chemical Engineering, 4(3): 3122-3142.
  • Tomul, F. (2011). Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite. Applied Surface Science, 258(5): 1836-1848.
  • Tomul, F. (2012). Influence of synthesis conditions on the physicochemical properties and catalytic activity of Fe/Cr-pillared bentonites. Journal of Nanomaterials, 2012: 3.
  • Tomul, F., Basoglu, F. T., Canbay, H. (2016). Determination of adsorptive and catalytic properties of copper, silver and iron contain titanium-pillared bentonite for the removal bisphenol A from aqueous solution. Applied Surface Science, 360: 579-593.
  • Tomul, F., Karakuş, D. (2016). Naproksenin Katalitik Islak Peroksit Oksidasyonu. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7.2: 125-132.
  • Vicente, M.A., Gil, A., Bergaya, F., 2013. Pillared clays and clay minerals. In: Bergaya, F., Lagaly, G. (Eds.), Handbook of Clay Science, Second Edition, Part A: Fundamentals. Elsevier, Amsterdam, pp. 523-557.
  • Yang, S., Huang, Q., Zhou, R. (2014). Influence of interactions between chromium and cerium on catalytic performances of CrO x–CeO2/Ti-PILC catalysts for deep oxidation of n-butylamine. Chinese Science Bulletin, 59(31): 3987-3992.
  • Yuan, L., Xiaojiao, C., Jingwei, G., Shimin, Z., Ping, N. (2015). Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation. Applied Surface Science, 324: 179–187.
  • Zhang, J., Zhang, S., Cai, W., Zhong, Q. (2013). The characterization of CrCe-doped on TiO2-pillared clay nanocomposites for NO oxidation and the promotion effect of CeOx. Applied Surface Science, 268: 535-540.
  • Zuo, S., Ding, M., Tong, J., Feng, L., Qi, C. (2015). Study on the preparation and characterization of a titanium-pillared clay-supported CrCe catalyst and its application to the degradation of a low concentration of chlorobenzene. Applied Clay Science, 105–106: 118–123.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Fatma Tomul

Yayımlanma Tarihi 3 Nisan 2017
Kabul Tarihi 30 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 8 Sayı: 1

Kaynak Göster

APA Tomul, F. (2017). Krom ve Seryum İçeren Titanyum-Sütunlu Bentonit Katalizörlerin Sentezi, Karakterizasyonu ve Katalitik Performansı. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 66-77.