Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Digital Terrain Model Obtained with Unmanned Aerial Vehicle in Roadway Projects: Bucak-Kocaaliler Roadway Example

Yıl 2017, Cilt: 8 Sayı: 2, 172 - 183, 11.09.2017

Öz

Obtaining the digital
terrain model with high accuracy and precision is crucial for healthily
determining the horizontal and vertical route and calculating earthwork amount
in highway projects. Unmanned aerial vehicles (UAVs), which are relatively
inexpensive and capable of carrying different measuring capabilities, are very
effective photogrammetric systems that can be used in the production of digital
terrain models, especially in the topographically undulating and mountainous
terrain where working conditions are difficult. In the literature, there are
few studies evaluating the performance of unmanned aerial vehicles in roadway
engineering, so the UAV systems should be tested on the implementation
projects. In this study, digital terrain model of 1500-meter roadway corridor
was produced by using an UAV supported by GNSS-IMU and a terrestrial method. In
the test roadway corridor, horizontal and vertical route works were done, cross
sections and profiles were taken and the amounts of earthwork were calculated.
The digital terrain models obtained from the two methods are overlapped in
general. In the calculation of the earthwork amount between the two methods,
11% difference for the total cutting amount, and 1% difference for the filling
amount were determined. The results show that the UAV photogrammetry is very
effective in the production of the digital terrain model and in the
determination of earthwork amount in roadway corridors which have undulating
and mountainous terrain and have no objects that prevent photogrammetric
surveys.

Kaynakça

  • Agisoft PhotoScan User Manual, 2017. http://www.agisoft.com/pdf/photoscan pro_1_3_en.pdf (Erişim Tarihi: 12.03.2017).
  • Besl, P.J., Mckay, N.D. (1992). A method for registration of 3D shapes, IEEE Transactions On Pattern Analysis And Machine Intelligence, 14 (2): 239-256.
  • Beşdok, E., Kasap, B. (2006). 3D Nesne modellemeye yönelik lazerli bir tarayıcı sistemin tasarımı ve gerçekleştirilmesi. Eleco'2006, Elektrik - Elektronik - Bilgisayar Mühendisliği Sempozyumu ve Fuarı Bildirileri, Bursa.
  • Bulatov, D., Solbrig, P., Gross, H., Wernerus, P., Repasi, E., Heipke, C. (2011). Context-based urban terrain reconstruction from UAV-videos for geoinformation applications, Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), September 14-16, 2011, Zurich, Switzerland.
  • Dubbini, M., Curzio, L.I., Campedelli, A. (2016). Digital elevation models from unmanned aerial vehicle surveys for archaeological interpretation of terrain anomalies: case study of the Roman Castrum of Burnum (Croatia). Journal of Archaeological Science, 8: 121-134.
  • Eisenbeiss, H. (2009). UAV Photogrammetry. Dissertation Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland.
  • Eisenbeiss, H., Sauerbier, M. (2011). Investigation of uav systems and flight modes for photogrammetric applications. The Photogrammetric Record, 26 (136): 400-421.
  • Höhle, J. (2009). DEM generation using a digital large format frame camera. Photogrammetric Engineering and Remote Sensing, 75 (1): 87-93.
  • Hudzietz, B.P., Saripalli, S. (2011). An experimental evaluation of 3D terrain mapping with an autonomous helicopter. Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), September 14-16, 2011, Zurich, Switzerland.
  • Jorayev, G., Wehr, K., Calvo, A.B., Njau, J., de la Torre, I. (2016). Imaging and photogrammetry models of Olduvai Gorge (Tanzania) by unmanned aerial vehicles: A high-resolution digital database for research and conservation of Early Stone Age sites. Journal of Archaeological Science, 75: 40-56.
  • Karkinli, A.E., Kesikoğlu, A., Kesikoğlu, M.H., Atasever, Ü.H., Özkan, C., Beşdok, E. (2015). İnsansız hava araçları ile sayısal arazi modeli üretimi. Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği (TUFUAB)VIII. Sempozyumu, Mayıs 21-23, 2015, Konya, Türkiye.
  • Lozano, J.F., Alonso, G.G. (2016). Improving archaeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain). Journal of Archaeological Science, 5: 509-520.
  • Mavinci, 2017. http://www.mavinci.de/pro-version/ (Erişim Tarihi: 12.03.2017).
  • Messinger, M., Silman, M. (2016). Unmanned aerial vehicles for the assessment and monitoring of environmental contamination: An example from coal ash spills. Environmental Pollution, 218: 889-894.
  • Metni, N., Hamel, T. (2007). A UAV for bridge inspection: visual serving control law with orientation limits. Automation in Construction, 17 (1): 3-10.
  • Ortiz, M.P., Pena, J.M., Gutierrez, P.A., Sanchez, J.T., Martinez, C.H., Granados, F.L. (2015). A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Applied Soft Computing, 37: 533-544.
  • Rathinam, S., Kim, Z.W., Sengupta, R. (2008). Vision-based monitoring of locally linear structures using an unmanned aerial vehicle. First Journal Of Infrastructure Systems, 14 (1): 52-63.
  • Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D. (2011). UAV photogrammetry for mapping and 3D modeling-current status and future perspectives. Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), September 14-16, 2011, Zurich, Switzerland.
  • Siebert, S., Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) System. Automation in Construction, 41: 1-14.
  • Sugiura, R., Tsuda, S., Tamiya, S., Itoh, A., Nishiwaki, K., Murakami, N., Shibuya, Y., Hirafuji, M., Nuske, S. (2016). Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering, 148: 1-10.
  • Vilariño, L.D., Jorge, G.H., Sánchez, M.J., Bueno, M., Arias, P. (2016). Determining the limits of unmanned aerial photogrammetry for the evaluation of road runoff. Measurement, 85: 132-141.
  • Yu, N., Li, L., Schmitz, N., Tian, L.F., Greenberg, J.A., Diers, B.W. (2016). Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sensing of Environment, 187: 91-101.
  • Zhang, C., Elaksher, A. (2011). An unmanned aerial vehicle based imaging system for 3D measurement of unpaved road surface distresses. Computer-Aided Civil Infrastructure Engineering, 27 (2): 118-129.

Karayolu Projelerinde İnsansız Hava Aracı ile Üretilen Sayısal Arazi Modelinin Değerlendirilmesi: Bucak-Kocaaliler Yolu Örneği

Yıl 2017, Cilt: 8 Sayı: 2, 172 - 183, 11.09.2017

Öz

Yüksek doğruluk ve
hassasiyette sayısal arazi modeli üretmek, karayolu projelerinde yatay ve düşey
güzergâhın sağlıklı şekilde belirlenmesi ve toprak işi miktarının hesaplanması
için önemlidir. Nispeten ucuzlayan ve farklı yeteneklerden oluşan ölçme ekipmanlarını
taşıyabilen insansız hava araçları (İHA), özelikle çalışma koşullarının zor olduğu
topografik olarak dalgalı ve dağlık arazilerde sayısal arazi modelinin
üretiminde kullanılabilecek çok etkili fotogrametrik sistemlerdir. Literatürde,
karayolu mühendisliğinde insansız hava araçlarının performansını değerlendiren
az sayıda çalışma olduğu için İHA sistemleri uygulama projelerinde test
edilmelidir. Bu çalışmada, GNSS-IMU destekli bir İHA ve yersel yöntem
kullanılarak 1500 metrelik karayolu koridorunun sayısal arazi modeli
üretilmiştir. Test karayolu koridorunda yatay ve düşey güzergâh çalışması
yapılmış, en kesitler ve profiller alınmış ve toprak işi miktarları
hesaplanmıştır. İki yöntemden elde edilen sayısal arazi modelleri genellikle
örtüşmektedir. İki yöntem arasında toprak işi miktarının hesabında toplam yarma
miktarında %11, dolgu miktarında %1 fark belirlenmiştir. Elde edilen sonuçlar,
İHA fotogrametrisinin fotogrametrik ölçümlere engel bir detay içermeyen dalgalı
ve dağlık arazi yapılı karayolu koridorlarında sayısal arazi modelinin
üretiminde ve toprak işi miktarının belirlenmesinde oldukça etkili olduğunu
göstermektedir. 

Kaynakça

  • Agisoft PhotoScan User Manual, 2017. http://www.agisoft.com/pdf/photoscan pro_1_3_en.pdf (Erişim Tarihi: 12.03.2017).
  • Besl, P.J., Mckay, N.D. (1992). A method for registration of 3D shapes, IEEE Transactions On Pattern Analysis And Machine Intelligence, 14 (2): 239-256.
  • Beşdok, E., Kasap, B. (2006). 3D Nesne modellemeye yönelik lazerli bir tarayıcı sistemin tasarımı ve gerçekleştirilmesi. Eleco'2006, Elektrik - Elektronik - Bilgisayar Mühendisliği Sempozyumu ve Fuarı Bildirileri, Bursa.
  • Bulatov, D., Solbrig, P., Gross, H., Wernerus, P., Repasi, E., Heipke, C. (2011). Context-based urban terrain reconstruction from UAV-videos for geoinformation applications, Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), September 14-16, 2011, Zurich, Switzerland.
  • Dubbini, M., Curzio, L.I., Campedelli, A. (2016). Digital elevation models from unmanned aerial vehicle surveys for archaeological interpretation of terrain anomalies: case study of the Roman Castrum of Burnum (Croatia). Journal of Archaeological Science, 8: 121-134.
  • Eisenbeiss, H. (2009). UAV Photogrammetry. Dissertation Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland.
  • Eisenbeiss, H., Sauerbier, M. (2011). Investigation of uav systems and flight modes for photogrammetric applications. The Photogrammetric Record, 26 (136): 400-421.
  • Höhle, J. (2009). DEM generation using a digital large format frame camera. Photogrammetric Engineering and Remote Sensing, 75 (1): 87-93.
  • Hudzietz, B.P., Saripalli, S. (2011). An experimental evaluation of 3D terrain mapping with an autonomous helicopter. Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), September 14-16, 2011, Zurich, Switzerland.
  • Jorayev, G., Wehr, K., Calvo, A.B., Njau, J., de la Torre, I. (2016). Imaging and photogrammetry models of Olduvai Gorge (Tanzania) by unmanned aerial vehicles: A high-resolution digital database for research and conservation of Early Stone Age sites. Journal of Archaeological Science, 75: 40-56.
  • Karkinli, A.E., Kesikoğlu, A., Kesikoğlu, M.H., Atasever, Ü.H., Özkan, C., Beşdok, E. (2015). İnsansız hava araçları ile sayısal arazi modeli üretimi. Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği (TUFUAB)VIII. Sempozyumu, Mayıs 21-23, 2015, Konya, Türkiye.
  • Lozano, J.F., Alonso, G.G. (2016). Improving archaeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain). Journal of Archaeological Science, 5: 509-520.
  • Mavinci, 2017. http://www.mavinci.de/pro-version/ (Erişim Tarihi: 12.03.2017).
  • Messinger, M., Silman, M. (2016). Unmanned aerial vehicles for the assessment and monitoring of environmental contamination: An example from coal ash spills. Environmental Pollution, 218: 889-894.
  • Metni, N., Hamel, T. (2007). A UAV for bridge inspection: visual serving control law with orientation limits. Automation in Construction, 17 (1): 3-10.
  • Ortiz, M.P., Pena, J.M., Gutierrez, P.A., Sanchez, J.T., Martinez, C.H., Granados, F.L. (2015). A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Applied Soft Computing, 37: 533-544.
  • Rathinam, S., Kim, Z.W., Sengupta, R. (2008). Vision-based monitoring of locally linear structures using an unmanned aerial vehicle. First Journal Of Infrastructure Systems, 14 (1): 52-63.
  • Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D. (2011). UAV photogrammetry for mapping and 3D modeling-current status and future perspectives. Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), September 14-16, 2011, Zurich, Switzerland.
  • Siebert, S., Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) System. Automation in Construction, 41: 1-14.
  • Sugiura, R., Tsuda, S., Tamiya, S., Itoh, A., Nishiwaki, K., Murakami, N., Shibuya, Y., Hirafuji, M., Nuske, S. (2016). Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering, 148: 1-10.
  • Vilariño, L.D., Jorge, G.H., Sánchez, M.J., Bueno, M., Arias, P. (2016). Determining the limits of unmanned aerial photogrammetry for the evaluation of road runoff. Measurement, 85: 132-141.
  • Yu, N., Li, L., Schmitz, N., Tian, L.F., Greenberg, J.A., Diers, B.W. (2016). Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sensing of Environment, 187: 91-101.
  • Zhang, C., Elaksher, A. (2011). An unmanned aerial vehicle based imaging system for 3D measurement of unpaved road surface distresses. Computer-Aided Civil Infrastructure Engineering, 27 (2): 118-129.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Emre Tercan

Yayımlanma Tarihi 11 Eylül 2017
Kabul Tarihi 13 Ağustos 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 8 Sayı: 2

Kaynak Göster

APA Tercan, E. (2017). Karayolu Projelerinde İnsansız Hava Aracı ile Üretilen Sayısal Arazi Modelinin Değerlendirilmesi: Bucak-Kocaaliler Yolu Örneği. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(2), 172-183.