Research Article
BibTex RIS Cite

The relationship between different granulosa cell morphologies and apoptosis in women with PCOS: Impact on clinical outcomes

Year 2026, Volume: 39 Issue: 1, 6 - 18, 28.01.2026
https://izlik.org/JA73DZ22YG

Abstract

Objective: The microenvironment of the oocyte is composed of granulosa cells (GC), which play a vital role in the process of oogenesis.
During Assisted Reproductive Technology (ART) treatment, the morphological characteristics of GC are evaluated. However, this
evaluation does not provide definitive clarity. There is a limited amount of research on the underlying mechanisms of abnormal GC
morphology, and it remains incompletely understood. Therefore, the aim of our study was to investigate apoptosis in GCs with varied
morphologies in patients with different infertility etiologies undergoing intracytoplasmic sperm injection (ICSI). We performed an
immunohistochemical analysis of caspase-3, cytochrome c, and heat shock protein-70 (HSP-70) expression levels, and evaluated their
impact on assisted reproduction.
Patients and Methods: The study comprised 142 patients, including 65 with polycystic ovary syndrome (PCOS) and 77 with male
factor (MF) infertility. The granulosa-oocyte complex was analyzed under a stereomicroscope and classified into dark granulosa cells
(DGC) and light granulosa cells (LGC). Fertilization rates, embryonic development, and pregnancy outcomes following ICSI were
evaluated. DGC exhibited reduced fertilization and pregnancy rates.
Results: Caspase-3 and cytochrome c expression levels were significantly elevated in the PCOS DGC (26, 86.6%; 25, 83.3%) and MF
DGC (34, 77.2%; 32, 72.7%) groups compared to the PCOS LGC (8, 22.8%; 5, 14.2%) and MF LGC (4, 12.1%; 7, 21.2%) groups (p =
0.001; p = 0.001), respectively. In contrast, expression levels of HSP-70 were significantly lower in the PCOS DGC (6, 20%) and MF
DGC (7, 15.9%) groups compared to the PCOS LGC (31, 88.5%) and MF LGC (32, 96.9%) groups (p = 0.001).
Conclusion: In the PCOS group, the number of good quality embryos on day 3 exhibited a positive correlation with HSP-70 expression
levels and a negative correlation with cytochrome c expression levels. Our findings suggest that DGC morphology is a reflection of
apoptosis, which impacts oocyte quality and, consequently, embryonic development, with PCOS contributing to the worsening of this
condition.

References

  • Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril 2013;99:63–67. doı: 10.1016/j.fertnstert.2012.09.023
  • Franks S, Mccarthy MI, Hardy K. Development of polycystic ovary syndrome: Involvement of Genetic and Environmental Factors Int J Androl 2006;29:278-85. doi: 10.1111/j.1365- 2605.2005.00623.x.
  • Mirza FG, Tahlak MA, Rjeili RB, et al. Polycystic ovarian syndrome (PCOS): Does the challenge end at conception? Int J Environ Res Public Health 2022;12;19:14914. doi: 10.3390/ ijerph192214914.
  • Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010;139:685-95. doi: 10.1530/REP-09-0345.
  • Tu J, Cheung AH, Chan CL, Chan WY. The role of microRNAs in ovarian granulosa cells in health and disease. Front Endocrinol 2019;10:174. doi: 10.3389/fendo.2019.00174.
  • Yildiz BO, Bozdag G, Yapici Z, Esinler I, Yarali H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod 2012; 27:3067-73. doi: 10.1093/humrep/des232.
  • Regan SLP, Knight PG, Yovich JL, Leung Y, Arfuso F, Dharmarajan A. Granulosa cell apoptosis in the ovarian follicle—a changing view. Front Endocrinol 2018;9:61. doi: 10.3389/fendo.2018.00061.
  • Evans AC. Characteristics of ovarian follicle development in domestic animals. Reprod Domest Anim 2003;38:240-6. doi: 10.1046/j.1439-0531.2003.00439.x.
  • Tilly JL. Apoptosis and ovarian function. Endocr Rev 1993;14:175-99. doi: 10.1530/ror.0.0010162.
  • Hsueh AJW, Billig H, Tsafriri A. Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev 1994;15:707-24. doi: 10.1210/edrv-15-6-707.
  • Meng L, Jan SZ, Hamer G, et al. Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis. Biol Reprod 2018;1;99:853-63. doi: 10.1093/biolre/ioy116.
  • Erbaş O, Akman L, Yavaşoğlu A, Terek MC, Akman T, Taskiran D. Oxytocin improves follicular reserve in a cisplatin-induced gonadotoxicity model in rats. Biomed Res Int 2014;2014:703691. doi: 10.1155/2014/703691.
  • Stanley AJ, Sivakumar KK, Nithy KT, et al. Postnatal exposure to chromium through mother’s milk accelerates follicular atresia in F1 offspring through increased oxidative stress and depletion of antioxidant enzymes. Free Radic Biol Med 2013;61:179-96. doi: 10.1016/j.freeradbiomed.2013.02.006.
  • Li Y, Zheng Q, Sun D, et al. Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J Cell Physiol 2019;234:7435-47. doi: 10.1002/jcp.27501.
  • An R, Wang X, Yang L, et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 2021;449:152665. doi: 10.1016/j.tox.2020.152665.
  • Lai Q, Xiang W, Li Q, et al. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front Med 2018;12:518-24. doi: 10.1007/s11684-017-0575-y.
  • Ow YP, Green DR, Hao Z, Mak TW. Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 2008;9:532-42. doi: 10.1038/nrm2434.
  • Zheng B, Meng J, Zhu Y, Ding M, Zhang Y, Zhou J. Melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS. J Ovarian Res 2021;14:152. doi: 10.1186/s13048.021.00912-y.
  • Lamkanfi M, Kanneganti T-D. Caspase-7: a protease involved in apoptosis and inflammation. J Biochem Cell Biol 2010;42:21-4. doi: 10.1016/j.biocel.2009.09.013.
  • Lobach VN, Casalechi M, Dela Cruz C, Pereira MT, Del Puerto HL, Reis FM. Caspase-3 gene expression in human luteinized granulosa cells is inversely correlated with the number of oocytes retrieved after controlled ovarian stimulation. Hum Fertil (Camb) 2019;22:33-8.doi: 10.1080/14647273.2017.1356474.
  • Salehi E, Aflatoonian R, Moeini A, et al. Apoptotic biomarkers in cumulus cells in relation to embryo quality in polycystic ovary syndrome. Arch Gynecol Obstet 2017;296:1219-27. doi: 10.1007/s00404-017-4523-5.
  • Yang H, Xie Y, Yang D, Ren D. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and puma. Oncotarget 2017;8:25310-22. doi: 10.18632/oncotarget.15813.
  • Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod 2012;86:27. doi: 10.1095/biolreprod.111.095224.
  • Luderer U. Ovarian toxicity from reactive oxygen species. Vitam Horm 2014;94:99-127. doi: 10.1016/B978-0-12- 800095-3.00004-3.
  • Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: A review. Reprod Biol Endocrinol 2012;10:49. doi: 10.1186/1477-7827-10-49.
  • Gao Y, Zou Y, Wu G, Zheng L. Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome. Front Med 2023;10:1193749. 10.3389/ fmed.2023.1193749.
  • Uçkan K, Demir H, Turan K, Sarıkaya E, Demir C. Role of oxidative stress in obese and Nonbesse PCOS patient. Int J Clin Pract 2022; 9;2022:4579831. doi:10.1155/2022/4579831.
  • Murri PM, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update 2013;19:268-88. doi: 10.1093/humupd/dms059.
  • Kurashova NA, Madaeva IM, Kolesnikova LI. Expression of HSP70 heat-shock proteins under oxidative stress. Adv Gerontol 2020; 10: 20-5. doi:10.1134/S2079057020010099
  • Grigorian IYu, Linkova NS, Polyakova VO, et al. Signaling molecules of the endometrium: gerontological and general pathological aspects, Adv Gerontol 2016;6: 36-43. doi. org/10.1134/S207.905.7016010045
  • Cedenho AP, Lima SB, Cenedeze MA, Spaine DM, Ortiz V, Oehninger S. Oligozoospermia and heat-shock protein expression in ejaculated spermatozoa. Hum Reprod 2006;21:1791-4. doi: 10.1093/humrep/del055.
  • Kuran SB, Altun A, Balci BK, Keskin I, Hocaoglu M. Expression of pro‐apoptotic and anti‐apoptotic proteins in granulosa cells of women with diminished ovarian reserve . J Assist Reprod Genet 2022;39:765-775. doi: 10.1007/s10815-022-02422-2.
  • Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Hum Reprod 2004;19:41-7. doi: 10.1093/humrep/deh098.
  • Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod 2018;33:1602-18. doi: 10.1016/j.fertnstert.2018.05.004.
  • Bozdag G, Mumusoglu S, Zengin D, Karabulut E, Yildiz BO. The prevalence and phenotypic features of polycystic ovary syndrome: A systematic review and meta-analysis. Hum Reprod 2016;31:2841-55. doi: 10.1093/humrep/dew218.
  • Krishnan A, Muthusami S. Hormonal alterations in PCOS and its influence on bone metabolism. J Endocrinol 2017;232:R99-R113. doi: 10.1530/JOE-16-0405.
  • Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. N Engl J Med 2016;375:54-64. doi: 10.1056/NEJMra1413510.
  • Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 2015;103:303-16. doi: 10.1016/j.fertnstert.2014.11.015.
  • Glintborg D, Altinok M, Mumm H, Buch K, Ravn P, Andersen M. Prolactin is associated with metabolic risk and cortisol in 1007 women with polycystic ovary syndrome. Hum Reprod 2014;29:1773-9. doi: 10.1093/humrep/deu133.
  • Saei Ghare Naz M, Mousavi M, Mahboobifard F, Niknam A, Ramezani Tehrani F. A meta-analysis of observational studies on prolactin levels in women with polycystic ovary syndrome. Diagnostics (Basel) 2022;23;12:2924. doi: 10.3390/ diagnostics12122924.
  • Rudnicka E, Suchta K, Grymowicz M, et al. Chronic low grade inflammation in pathogenesis of PCOS. Int J Mol Sci 2021;6;22:3789. doi: 10.3390/ijms22073789.
  • Giampaolino P, Foreste V, Di Filippo C, et al. Microbiome and PCOS: State-of-art and future aspects. Int J Mol Sci 2021;19;22:2048. doi: 10.3390/ijms22042048.
  • Wit AA, Wurth YA, Kruip TA. Effect of ovarian phase and follicle quality on morphology and developmental capacity of the bovine cumulus-oocyte complex. J Anim Sci 2000; 78: 1277-83. doi: 10.2527/2000.7851277x.
  • Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH. Cumulus cell apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ET. J Ass Reprod Gen 2001; 18: 490-8. doi: 10.1023/a:1016649026353.
  • Qiao J, Feng HL. Extra – and intra-ovarian factors in polycystic ovary syndrome: Impact on oocyte maturation and embryo developmental competence. Hum Reprod Update 2011; 17:17- 33. doi: 10.1093/humupd/dmq032.
  • Kalra SK, Ratcliffe SJ, Dokras A. Is the fertile window extended in women with polycystic ovary syndrome? Utilizing the society for assisted reproductive technology registry to assess the impact of reproductive aging on live-birth rate. Fertil Steril 2013; 100:208-213. doi: 10.1016/j.fertnstert.2013.02.055
  • Inoue N, Matsuda F, Goto Y, Manabe N. Role of cell-death ligand-receptor system of granulosa cells in selective follicular atresia in porcine ovary. J Reprod Dev 2011; 57: 169-75. doi: 10.1262/jrd.10-198e.
  • Matsuda-Minehata F, Inoue N, Goto Y, Manabe N. The regulation of ovarian granulosa cell death by pro – and antiapoptotic molecules. J Reprod Dev 2006;52: 695-705. doi: 10.1262/jrd.18069.
  • Han ZB, Lan GC, Wu YG, et al. Interactive effect of granulosa cell apoptosis, follicle size, cumulus-oocyte complex morphology, and cumulus expansion on the developmental competence of goat oocytes: a study using the well-in-drop culture system. Reprod 2006;132: 749-58. doi: 10.1530/REP- 06-0055.
  • Amopour H, Mohammad AK, Mohiti MJ, Solaimani M. Rate of cumulus cell apoptosis from fertilized and unfertilized oocytes and acid phosphatase levels in follicular fluids after intracytoplasmic sperm injection. Iran Biomed J 2005; 9: 163- 7.
  • Nakayama M, Manabe N, Nishihara S, Miyamoto H. Speciesspecific differences in apoptotic cell localization in granulosa and theca interna cells during follicular atresia in porcine and bovine ovaries. J Reprod Develop 2000; 46: 147-56. doi: 10.1262/jrd.46.147.
  • Peng SL, Wu QF, Xie Q, Tan J, Shu KY. PATL2 regulated the apoptosis of ovarian granulosa cells in patients with PCOS. Gynecol Endocrinol 2021;37:629–34. doi: 10.1080/09513590.2021.1928066.
  • Das M, Djahanbakhch O, Hacihanefioglu B, et al. Granulosa cell survival and proliferation are altered in polycystic ovary syndrome. J Clin Endocrinol Metab 2008;93(3:881-7. doi: 10.1210/jc.2007-1650.
  • Webber LJ, Stubbs S, Stark J, et al. Formation and early development of follicles in the polycystic ovary. Lancet 2003; 362(9389):1017-21. doi: 10.1016/s0140-6736(03)14410-8.
  • Tesarik J, Mendoza C, Greco E. Paternal effects acting during the first cell cycle of human preimplantation development after ICSI. Hum Reprod 2002;17:184-9 doi: 10.1093/ humrep/17.1.184.
  • Barroso G, Valdespin C, Vega E, et al. Developmental sperm contributions: fertilization and beyond. Fertil Steril 2009;92: 835-48. doi: 10.1016/j.fertnstert.2009.06.030.
  • Liao QY, Huang B, Zhang SJ, et al. Influence of different quality sperm on early embryo morphokinetic parameters and cleavage patterns: A retrospective time-lapse study. Curr Med Sci 2020;40:960-7. doi: 10.1007/s11596.020.2272-3.
  • Corn CM, Hauser-Kronberger C, Moser M, Tews G, Ebner T. Predictive value of cumulus cell apoptosis with regard to blastocyst development of corresponding gametes. Fertil Steril 2005;84: 627-33. doi: 10.1016/j.fertnstert.2005.03.061.
  • Heijnen EM, Eijkemans MJ, Hughes EG, Laven JS, Macklon NS. Fauser BC. A meta-analysis of outcomes of conventional IVF in women with polycystic ovary syndrome. Hum Reprod Update 2006; 12:13-21. doi: 10.1093/humupd/dmi036.
  • Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, Hoover DL. Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine 2001;21;16:210-9. doi: 10.1006/cyto.2001.0959.
  • Hartl FU, Martin J, Neupert W. Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct 1992; 21:293-322. doi: 10.1146/ annurev.bb.21.060192.001453.
  • Liu Y, Yu Z, Zhao S, et al. Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality. J Assist Reprod Genet 2021;38:471-7. doi: 10.1007/s10815.020.02014-y.
  • Li J, Chen H, Gou M, et al. Molecular features of polycystic ovary syndrome revealed by transcriptome analysis of oocytes and cumulus cells. Front Cell Dev Biol 2021;9. doi: 10.3389/ fcell.2021.735684.
  • Ulrich Hartl F, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature 2011; 20;475(7356):324-32. doi: 10.1038/nature10317.
  • Khan A, Dou J, Wang Y, et al. Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells. J Anim Sci Biotechnol 2020;18;11:25. doi: 10.1186/ s40104-019-0408-8
  • Khan MZ, Khan A, Chen W, Chai W, Wang C. Advancements in genetic biomarkers and exogenous antioxidant supplementation for safeguarding mammalian cells against heat-induced oxidative stress and apoptosis. Antioxidants (Basel) 2024;20;13:258. doi: 10.3390/antiox13030258.
  • Matos L, Stevenson D, Gomes F, Silva-Carvalho JL, Almeida H. Superoxide dismutase expression in human cumulus oophorus cells. Mol Hum Reprod 2009;411-9. doi: 10.1093/ molehr/gap034.
  • Fencwick MA, Hurst PR. 2002. Immunohistochemical localization of active caspase-3 in the mouse ovary: growth and atresia of small follicles. Reprod 2009;124:659-65. doi: 10.1530/rep.0.1240659.
  • Daniel A, Dumesic MD, David R, Meldrum MD, Mandy G, Katz-Jaffe PD. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 2015; 303-16. doi: 10.1016/j.fertnstert.2014.11.015.

Year 2026, Volume: 39 Issue: 1, 6 - 18, 28.01.2026
https://izlik.org/JA73DZ22YG

Abstract

References

  • Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril 2013;99:63–67. doı: 10.1016/j.fertnstert.2012.09.023
  • Franks S, Mccarthy MI, Hardy K. Development of polycystic ovary syndrome: Involvement of Genetic and Environmental Factors Int J Androl 2006;29:278-85. doi: 10.1111/j.1365- 2605.2005.00623.x.
  • Mirza FG, Tahlak MA, Rjeili RB, et al. Polycystic ovarian syndrome (PCOS): Does the challenge end at conception? Int J Environ Res Public Health 2022;12;19:14914. doi: 10.3390/ ijerph192214914.
  • Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010;139:685-95. doi: 10.1530/REP-09-0345.
  • Tu J, Cheung AH, Chan CL, Chan WY. The role of microRNAs in ovarian granulosa cells in health and disease. Front Endocrinol 2019;10:174. doi: 10.3389/fendo.2019.00174.
  • Yildiz BO, Bozdag G, Yapici Z, Esinler I, Yarali H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod 2012; 27:3067-73. doi: 10.1093/humrep/des232.
  • Regan SLP, Knight PG, Yovich JL, Leung Y, Arfuso F, Dharmarajan A. Granulosa cell apoptosis in the ovarian follicle—a changing view. Front Endocrinol 2018;9:61. doi: 10.3389/fendo.2018.00061.
  • Evans AC. Characteristics of ovarian follicle development in domestic animals. Reprod Domest Anim 2003;38:240-6. doi: 10.1046/j.1439-0531.2003.00439.x.
  • Tilly JL. Apoptosis and ovarian function. Endocr Rev 1993;14:175-99. doi: 10.1530/ror.0.0010162.
  • Hsueh AJW, Billig H, Tsafriri A. Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev 1994;15:707-24. doi: 10.1210/edrv-15-6-707.
  • Meng L, Jan SZ, Hamer G, et al. Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis. Biol Reprod 2018;1;99:853-63. doi: 10.1093/biolre/ioy116.
  • Erbaş O, Akman L, Yavaşoğlu A, Terek MC, Akman T, Taskiran D. Oxytocin improves follicular reserve in a cisplatin-induced gonadotoxicity model in rats. Biomed Res Int 2014;2014:703691. doi: 10.1155/2014/703691.
  • Stanley AJ, Sivakumar KK, Nithy KT, et al. Postnatal exposure to chromium through mother’s milk accelerates follicular atresia in F1 offspring through increased oxidative stress and depletion of antioxidant enzymes. Free Radic Biol Med 2013;61:179-96. doi: 10.1016/j.freeradbiomed.2013.02.006.
  • Li Y, Zheng Q, Sun D, et al. Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J Cell Physiol 2019;234:7435-47. doi: 10.1002/jcp.27501.
  • An R, Wang X, Yang L, et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 2021;449:152665. doi: 10.1016/j.tox.2020.152665.
  • Lai Q, Xiang W, Li Q, et al. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front Med 2018;12:518-24. doi: 10.1007/s11684-017-0575-y.
  • Ow YP, Green DR, Hao Z, Mak TW. Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 2008;9:532-42. doi: 10.1038/nrm2434.
  • Zheng B, Meng J, Zhu Y, Ding M, Zhang Y, Zhou J. Melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS. J Ovarian Res 2021;14:152. doi: 10.1186/s13048.021.00912-y.
  • Lamkanfi M, Kanneganti T-D. Caspase-7: a protease involved in apoptosis and inflammation. J Biochem Cell Biol 2010;42:21-4. doi: 10.1016/j.biocel.2009.09.013.
  • Lobach VN, Casalechi M, Dela Cruz C, Pereira MT, Del Puerto HL, Reis FM. Caspase-3 gene expression in human luteinized granulosa cells is inversely correlated with the number of oocytes retrieved after controlled ovarian stimulation. Hum Fertil (Camb) 2019;22:33-8.doi: 10.1080/14647273.2017.1356474.
  • Salehi E, Aflatoonian R, Moeini A, et al. Apoptotic biomarkers in cumulus cells in relation to embryo quality in polycystic ovary syndrome. Arch Gynecol Obstet 2017;296:1219-27. doi: 10.1007/s00404-017-4523-5.
  • Yang H, Xie Y, Yang D, Ren D. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and puma. Oncotarget 2017;8:25310-22. doi: 10.18632/oncotarget.15813.
  • Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod 2012;86:27. doi: 10.1095/biolreprod.111.095224.
  • Luderer U. Ovarian toxicity from reactive oxygen species. Vitam Horm 2014;94:99-127. doi: 10.1016/B978-0-12- 800095-3.00004-3.
  • Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: A review. Reprod Biol Endocrinol 2012;10:49. doi: 10.1186/1477-7827-10-49.
  • Gao Y, Zou Y, Wu G, Zheng L. Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome. Front Med 2023;10:1193749. 10.3389/ fmed.2023.1193749.
  • Uçkan K, Demir H, Turan K, Sarıkaya E, Demir C. Role of oxidative stress in obese and Nonbesse PCOS patient. Int J Clin Pract 2022; 9;2022:4579831. doi:10.1155/2022/4579831.
  • Murri PM, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update 2013;19:268-88. doi: 10.1093/humupd/dms059.
  • Kurashova NA, Madaeva IM, Kolesnikova LI. Expression of HSP70 heat-shock proteins under oxidative stress. Adv Gerontol 2020; 10: 20-5. doi:10.1134/S2079057020010099
  • Grigorian IYu, Linkova NS, Polyakova VO, et al. Signaling molecules of the endometrium: gerontological and general pathological aspects, Adv Gerontol 2016;6: 36-43. doi. org/10.1134/S207.905.7016010045
  • Cedenho AP, Lima SB, Cenedeze MA, Spaine DM, Ortiz V, Oehninger S. Oligozoospermia and heat-shock protein expression in ejaculated spermatozoa. Hum Reprod 2006;21:1791-4. doi: 10.1093/humrep/del055.
  • Kuran SB, Altun A, Balci BK, Keskin I, Hocaoglu M. Expression of pro‐apoptotic and anti‐apoptotic proteins in granulosa cells of women with diminished ovarian reserve . J Assist Reprod Genet 2022;39:765-775. doi: 10.1007/s10815-022-02422-2.
  • Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Hum Reprod 2004;19:41-7. doi: 10.1093/humrep/deh098.
  • Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod 2018;33:1602-18. doi: 10.1016/j.fertnstert.2018.05.004.
  • Bozdag G, Mumusoglu S, Zengin D, Karabulut E, Yildiz BO. The prevalence and phenotypic features of polycystic ovary syndrome: A systematic review and meta-analysis. Hum Reprod 2016;31:2841-55. doi: 10.1093/humrep/dew218.
  • Krishnan A, Muthusami S. Hormonal alterations in PCOS and its influence on bone metabolism. J Endocrinol 2017;232:R99-R113. doi: 10.1530/JOE-16-0405.
  • Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. N Engl J Med 2016;375:54-64. doi: 10.1056/NEJMra1413510.
  • Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 2015;103:303-16. doi: 10.1016/j.fertnstert.2014.11.015.
  • Glintborg D, Altinok M, Mumm H, Buch K, Ravn P, Andersen M. Prolactin is associated with metabolic risk and cortisol in 1007 women with polycystic ovary syndrome. Hum Reprod 2014;29:1773-9. doi: 10.1093/humrep/deu133.
  • Saei Ghare Naz M, Mousavi M, Mahboobifard F, Niknam A, Ramezani Tehrani F. A meta-analysis of observational studies on prolactin levels in women with polycystic ovary syndrome. Diagnostics (Basel) 2022;23;12:2924. doi: 10.3390/ diagnostics12122924.
  • Rudnicka E, Suchta K, Grymowicz M, et al. Chronic low grade inflammation in pathogenesis of PCOS. Int J Mol Sci 2021;6;22:3789. doi: 10.3390/ijms22073789.
  • Giampaolino P, Foreste V, Di Filippo C, et al. Microbiome and PCOS: State-of-art and future aspects. Int J Mol Sci 2021;19;22:2048. doi: 10.3390/ijms22042048.
  • Wit AA, Wurth YA, Kruip TA. Effect of ovarian phase and follicle quality on morphology and developmental capacity of the bovine cumulus-oocyte complex. J Anim Sci 2000; 78: 1277-83. doi: 10.2527/2000.7851277x.
  • Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH. Cumulus cell apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ET. J Ass Reprod Gen 2001; 18: 490-8. doi: 10.1023/a:1016649026353.
  • Qiao J, Feng HL. Extra – and intra-ovarian factors in polycystic ovary syndrome: Impact on oocyte maturation and embryo developmental competence. Hum Reprod Update 2011; 17:17- 33. doi: 10.1093/humupd/dmq032.
  • Kalra SK, Ratcliffe SJ, Dokras A. Is the fertile window extended in women with polycystic ovary syndrome? Utilizing the society for assisted reproductive technology registry to assess the impact of reproductive aging on live-birth rate. Fertil Steril 2013; 100:208-213. doi: 10.1016/j.fertnstert.2013.02.055
  • Inoue N, Matsuda F, Goto Y, Manabe N. Role of cell-death ligand-receptor system of granulosa cells in selective follicular atresia in porcine ovary. J Reprod Dev 2011; 57: 169-75. doi: 10.1262/jrd.10-198e.
  • Matsuda-Minehata F, Inoue N, Goto Y, Manabe N. The regulation of ovarian granulosa cell death by pro – and antiapoptotic molecules. J Reprod Dev 2006;52: 695-705. doi: 10.1262/jrd.18069.
  • Han ZB, Lan GC, Wu YG, et al. Interactive effect of granulosa cell apoptosis, follicle size, cumulus-oocyte complex morphology, and cumulus expansion on the developmental competence of goat oocytes: a study using the well-in-drop culture system. Reprod 2006;132: 749-58. doi: 10.1530/REP- 06-0055.
  • Amopour H, Mohammad AK, Mohiti MJ, Solaimani M. Rate of cumulus cell apoptosis from fertilized and unfertilized oocytes and acid phosphatase levels in follicular fluids after intracytoplasmic sperm injection. Iran Biomed J 2005; 9: 163- 7.
  • Nakayama M, Manabe N, Nishihara S, Miyamoto H. Speciesspecific differences in apoptotic cell localization in granulosa and theca interna cells during follicular atresia in porcine and bovine ovaries. J Reprod Develop 2000; 46: 147-56. doi: 10.1262/jrd.46.147.
  • Peng SL, Wu QF, Xie Q, Tan J, Shu KY. PATL2 regulated the apoptosis of ovarian granulosa cells in patients with PCOS. Gynecol Endocrinol 2021;37:629–34. doi: 10.1080/09513590.2021.1928066.
  • Das M, Djahanbakhch O, Hacihanefioglu B, et al. Granulosa cell survival and proliferation are altered in polycystic ovary syndrome. J Clin Endocrinol Metab 2008;93(3:881-7. doi: 10.1210/jc.2007-1650.
  • Webber LJ, Stubbs S, Stark J, et al. Formation and early development of follicles in the polycystic ovary. Lancet 2003; 362(9389):1017-21. doi: 10.1016/s0140-6736(03)14410-8.
  • Tesarik J, Mendoza C, Greco E. Paternal effects acting during the first cell cycle of human preimplantation development after ICSI. Hum Reprod 2002;17:184-9 doi: 10.1093/ humrep/17.1.184.
  • Barroso G, Valdespin C, Vega E, et al. Developmental sperm contributions: fertilization and beyond. Fertil Steril 2009;92: 835-48. doi: 10.1016/j.fertnstert.2009.06.030.
  • Liao QY, Huang B, Zhang SJ, et al. Influence of different quality sperm on early embryo morphokinetic parameters and cleavage patterns: A retrospective time-lapse study. Curr Med Sci 2020;40:960-7. doi: 10.1007/s11596.020.2272-3.
  • Corn CM, Hauser-Kronberger C, Moser M, Tews G, Ebner T. Predictive value of cumulus cell apoptosis with regard to blastocyst development of corresponding gametes. Fertil Steril 2005;84: 627-33. doi: 10.1016/j.fertnstert.2005.03.061.
  • Heijnen EM, Eijkemans MJ, Hughes EG, Laven JS, Macklon NS. Fauser BC. A meta-analysis of outcomes of conventional IVF in women with polycystic ovary syndrome. Hum Reprod Update 2006; 12:13-21. doi: 10.1093/humupd/dmi036.
  • Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, Hoover DL. Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine 2001;21;16:210-9. doi: 10.1006/cyto.2001.0959.
  • Hartl FU, Martin J, Neupert W. Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct 1992; 21:293-322. doi: 10.1146/ annurev.bb.21.060192.001453.
  • Liu Y, Yu Z, Zhao S, et al. Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality. J Assist Reprod Genet 2021;38:471-7. doi: 10.1007/s10815.020.02014-y.
  • Li J, Chen H, Gou M, et al. Molecular features of polycystic ovary syndrome revealed by transcriptome analysis of oocytes and cumulus cells. Front Cell Dev Biol 2021;9. doi: 10.3389/ fcell.2021.735684.
  • Ulrich Hartl F, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature 2011; 20;475(7356):324-32. doi: 10.1038/nature10317.
  • Khan A, Dou J, Wang Y, et al. Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells. J Anim Sci Biotechnol 2020;18;11:25. doi: 10.1186/ s40104-019-0408-8
  • Khan MZ, Khan A, Chen W, Chai W, Wang C. Advancements in genetic biomarkers and exogenous antioxidant supplementation for safeguarding mammalian cells against heat-induced oxidative stress and apoptosis. Antioxidants (Basel) 2024;20;13:258. doi: 10.3390/antiox13030258.
  • Matos L, Stevenson D, Gomes F, Silva-Carvalho JL, Almeida H. Superoxide dismutase expression in human cumulus oophorus cells. Mol Hum Reprod 2009;411-9. doi: 10.1093/ molehr/gap034.
  • Fencwick MA, Hurst PR. 2002. Immunohistochemical localization of active caspase-3 in the mouse ovary: growth and atresia of small follicles. Reprod 2009;124:659-65. doi: 10.1530/rep.0.1240659.
  • Daniel A, Dumesic MD, David R, Meldrum MD, Mandy G, Katz-Jaffe PD. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 2015; 303-16. doi: 10.1016/j.fertnstert.2014.11.015.
There are 69 citations in total.

Details

Primary Language English
Subjects Surgery (Other)
Journal Section Research Article
Authors

Ayşe Altun 0000-0002-2765-5766

Kubra Nur Uzun This is me 0000-0001-6440-0984

Bircan Kolbaşı

Ilknur Keskin This is me 0000-0025-4645-9899

Özlem Dural 0000-0001-7475-9982

Submission Date February 13, 2025
Acceptance Date August 14, 2025
Publication Date January 28, 2026
DOI https://doi.org/10.5472/marumj.1872725
IZ https://izlik.org/JA73DZ22YG
Published in Issue Year 2026 Volume: 39 Issue: 1

Cite

APA Altun, A., Uzun, K. N., Kolbaşı, B., Keskin, I., & Dural, Ö. (2026). The relationship between different granulosa cell morphologies and apoptosis in women with PCOS: Impact on clinical outcomes. Marmara Medical Journal, 39(1), 6-18. https://doi.org/10.5472/marumj.1872725
AMA 1.Altun A, Uzun KN, Kolbaşı B, Keskin I, Dural Ö. The relationship between different granulosa cell morphologies and apoptosis in women with PCOS: Impact on clinical outcomes. Marmara Med J. 2026;39(1):6-18. doi:10.5472/marumj.1872725
Chicago Altun, Ayşe, Kubra Nur Uzun, Bircan Kolbaşı, Ilknur Keskin, and Özlem Dural. 2026. “The Relationship Between Different Granulosa Cell Morphologies and Apoptosis in Women With PCOS: Impact on Clinical Outcomes”. Marmara Medical Journal 39 (1): 6-18. https://doi.org/10.5472/marumj.1872725.
EndNote Altun A, Uzun KN, Kolbaşı B, Keskin I, Dural Ö (January 1, 2026) The relationship between different granulosa cell morphologies and apoptosis in women with PCOS: Impact on clinical outcomes. Marmara Medical Journal 39 1 6–18.
IEEE [1]A. Altun, K. N. Uzun, B. Kolbaşı, I. Keskin, and Ö. Dural, “The relationship between different granulosa cell morphologies and apoptosis in women with PCOS: Impact on clinical outcomes”, Marmara Med J, vol. 39, no. 1, pp. 6–18, Jan. 2026, doi: 10.5472/marumj.1872725.
ISNAD Altun, Ayşe - Uzun, Kubra Nur - Kolbaşı, Bircan - Keskin, Ilknur - Dural, Özlem. “The Relationship Between Different Granulosa Cell Morphologies and Apoptosis in Women With PCOS: Impact on Clinical Outcomes”. Marmara Medical Journal 39/1 (January 1, 2026): 6-18. https://doi.org/10.5472/marumj.1872725.
JAMA 1.Altun A, Uzun KN, Kolbaşı B, Keskin I, Dural Ö. The relationship between different granulosa cell morphologies and apoptosis in women with PCOS: Impact on clinical outcomes. Marmara Med J. 2026;39:6–18.
MLA Altun, Ayşe, et al. “The Relationship Between Different Granulosa Cell Morphologies and Apoptosis in Women With PCOS: Impact on Clinical Outcomes”. Marmara Medical Journal, vol. 39, no. 1, Jan. 2026, pp. 6-18, doi:10.5472/marumj.1872725.
Vancouver 1.Altun A, Uzun KN, Kolbaşı B, Keskin I, Dural Ö. The relationship between different granulosa cell morphologies and apoptosis in women with PCOS: Impact on clinical outcomes. Marmara Med J [Internet]. 2026 Jan. 1;39(1):6-18. Available from: https://izlik.org/JA73DZ22YG