BibTex RIS Kaynak Göster

METHYLATION OF THE 5' CpG ISLANDS AND BLADDER CANCER PATHOGENESIS

Yıl 1999, Cilt: 12 Sayı: 4, 3 - 208, 03.12.2016

Öz

Deregulation of cell cycle that results in uncontrolled cellular proliferation is the basis of neoplastic process. Bladder tumors are heterogenous in their behavior, and it is very difficult to predict the clinical course in many patients. In order to alleviate this problem, attention has been focused on mutations in various cell cycle regulators and their association with tumor behavior. Mutations of the p16/CDKN2 gene, encoding a cyclin-dependent kinase inhibitor, are common in bladder cancer. In contrast to other tumor suppressor genes, the two most common mechanisms for loss of p16/CDKN2 function are homozygous deletion and loss of transcription associated with hyperméthylation of the 5'CpG island region. Recently, it is found that méthylation of p16/CDKN2 is potentially reversible with exposure to demethylating agents, such as 5- aza-2'-deoxycytidine, which is a well-established inhibitor of DNA méthylation, which may open up new ways to effective tumor management.
Key Words: Méthylation, Bladder cancer, Cell cycle

Kaynakça

  • liolodner RD, hall MR, Lipford J, et al. Human mismatch repair genes and their association with hereditary non-polyposis colon cancer. Cold Spring harb Symp Quant Biol 1994; 59: 351-338.
  • Rubben II, Lutzeyer It', Wallace DMA. The epidemiology and etiology of bladder cancer. Bladder Cancer. Berlin Heidelberg. Springer Verlag, 1985; 32-61.
  • Bender CM, Fao MM, Jones PA. Inhibition of DMA methylation by 5-aza-2 -deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 1998; I; 58: 95-101.
  • Sherr CJ. Mammalian Q1 cyclins. Cell 1993; 73: 1059-1065.
  • Xiong Y, Hannon GJ, Zhang H, Casso D, Robayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Mature 1993; 366: 701-704.
  • Hartwell LH, Winert TA. Checkpoints: controls that ensure the order of cell cycle events. Science 1989: 246: 629-634.
  • Ramb A, Liu Q, Harshman R, et al. Rates of pl6 (MTS1) mutations in primary tumors with 9p loss. Science 1994; 265: 415-417.
  • Cairns P, Mao L, Merlo A, Lee DJ, Schwab D, Eby Y, Tokino R, van der Riet P, Blaugrund JE, Sisdransky D: Rates of pi 6 (MTS1) mutations in primary tumors with 9p loss. Science 1994; 265: 415-416.
  • Miyamoto H, Shuın T, Torigo S, Iwasaki Y, Rubota Y. RB gene mutations in primary human bladder cancer. Br J Cancer 1995; 71: 831-835.
  • Levine AJ, Momand J, Finaly C.A. The p53 Tumor suppressor gene. Mature 1991; 351: 453-456.
  • Fountain JW, Rarayiogou M, Ernstoff MS, et al. Homozygous deletions within human chromosome band 9p21 in melanoma. Proc Mail Acad Sci USA 1992:89: 10557-10561.
  • Olopade Ol, Boh lander SR, Pomykala H, Maltepe E, Van Melle E, Le Beau MM. Mapping of the shortest region of overlap of deletions of the short arm of chromosome 9 associated with human neoplasia. Genomics 1992; 14: 431-443.
  • Olopade OL Buchhagen DL, Malik R, et al. Homozygous loss of the interferon gene defines the critical region on 9p that is deleted in lung cancer. Cancer Res 1993; 53: 2410-2415.
  • Olopade Ol, Jenkins RB, Ranson DT, et al. Molecular analysis of deletions of short arm of chromosome 9 in human gliomas. Cancer Res 1992; 52: 2523-2529.
  • Van der Riet P, Mawroz II, 11 ruban RH, et at. Frequent loss of chromosome 9p21-22 early in head and neck cancer progression. Cancer Res 1994; 54: 1156-1158.
  • Gonzalez-Zulueta M, Atsuko S, Ohneseıt PF, et al. High frequency of chromosome 9p allelic loss and CDRM2 tumor suppressor gene alterations in squamous cell carcinoma of bladder. J Mail Cl 1995; 87: 1383-1392.
  • 7. Stadler WM, Sherman J, Bohlander SR, Roulston D, Dreyling M, Rukstalis D. Homozygous deletions within chromosomal bands 9p21-22 in bladder cancer. Cancer Res 1994; 54: 2060-2063.
  • Gibas Z, Prout GR, Connolly JG, Pontes JE, Sandberg AA. Monrandom chromosomal changes in transitional cell carcinoma of the bladder. Cancer Res 1984:44: 1257-1264.
  • Rnowles MA, Elder PA, Williamson M, Cairns JP, Shaw ME, Law MG. Allotype of human bladder cancer. Cancer Res 1994; 54: 531-538.
  • Türkeri LM, Akdaş G, Özyürek M, Akdaş A. The influence of chromosome 9 and blood group antigen abnormalities on tumor behavior in carcinoma of the bladder. Üroloji Bülteni 1997; 8: 201-205.
  • Ramb A, Gruis MA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264: 436-440.
  • Cairns P, Tokino R, Eby Y, Sidransky D. Homozygous deletions of 9p21 in primary human bladder tumors detected by comparative multiplex polymerase chain reaction. Cancer Res 1994; 54: 1422-1424.
  • Orlow I, Lacombe L, Hannon GJ, et al. Deletion of the pl6 and pi5 genes in human bladder tumors. J Matl Cancer Inst 1995; 87: 1524-1529.
  • Gruis MA, Weaver-Feldhaus J, Liu Q, et al. Genetic evidence in melanoma and bladder cancers that pI6 and p53 function in separate pathways of tumor suppression. Am J Pathol 1995; 146: 1199- 1206.
  • Sarkis /IS, Dalbagni G, Cordon C, et al. Association of p53 nuclear over-expression and tumor progression in carcinoma in situ of the bladder. J Urol 1994; 152 (2 Pt I): 388-392.
  • Dalbagni G, Presti J, Ruter V, Pair WR, Cordon-Cardo
  • C. Genetic alterations in bladder cancer. Lancet 1993; 342: 469-471.
  • Gonzalez-Zulueta M, Bender CM, Yang /Î5, et al. Méthylation of the 5' CpG island of the pl6/CDKM2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res 1995; 55: 4531-4535.
  • Li E, Beard C, Jaenisch R. Role for DMA méthylation ingenomic imprinting, nature 1993; 366: 362-365.
  • Peinberg, AP, and Vogelstein B. flypomethylation distinguishes genes of some human cancers from their normal counterparts, nature 1983; 301:89-91.
  • Jones PA. DnA méthylation errors and cancer. Cancer Res 1996; 56, 2463-2467.
  • Bird AP. CpG-rich islands and the function of DnA méthylation, nature 1986; 321: 209-213.
  • Baylin SB, Makos M, Wu JJ, et al. Abnormal patterns of the DnA méthylation in human neoplasia: Potential consequences for tumor progression. Cancer Cells 1991: 3: 383-390.
  • Herman JG, Latif F, Weng YK, et al. Silencing of the VP1L tumor-suppressor gene by DnA méthylation in renal carcinoma. Proc natl Acad Sci USA 1994; 91: 9700-9704.
  • Feinberg, AP, Gehrke CW, Kuo KC, Ehrlich M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 1988; 48:
  • -1 161.
  • Peinberg AP, Vogelstein B. flypomethylation distinguishes genes of some human cancers from their normal counterparts, nature 1983; 301: 89- 92.
  • Baylin SB, Fearon ER, Vogelstein B, et al. flypernméthylation of the 5 region of the calcitonin gene is a property of human lymphoid and acute myeloid malignancies. Blood 1987; 70: 412-417.
  • Kauitiainen TL, Jones PA. DnA methyltransferase levels in tumorigenic and nontumorigenic cells in culture. J Biol Chem 1986; 261: 1594-1598.
  • Singer-Sam J, LeBon JM. Tanguay RL, Riggs AD. A quantitative Flpall-PCR assay to measure méthylation of DnA from a small number of cells, nucleic Acids Res 1990; 18: 687.
  • Southern EM. Detection of specific sequences
  • among DMA fragments separted by gel
  • electrophoresis. J Mol Biol 1975; 98: 503-517.
  • Gonzalgo ML, Liang G, Spruck 111 Cfl, Zingg JM,
  • Rideout WM, Jones P. Identification and
  • characterization of differentially methylated regions of genomic DMA by methylation-sensitive arbitrarily primed PCR. Cancer Research 1997; 57: 594-599.
  • Bird AP. CpG-rich islands and the function of DMA méthylation. Mature 1986; 321: 209-213.
  • Liu WM, Schmid CW. Proposed roles for DMA méthylation in Alu transcriptional repression and mutational inactivation, nucleic Acids Res 1993; 21: 1351-1359.
  • Ferguson-Smith AC, Sasaki FI, Cattanach BM, Surani MA. Parental-origin-specific epigenetic modification of the mouse FI 19 gene. Mature 1993; 362: 751- 755.
  • Jarrard DF, Bova GS, Ewing CM, et al. Deletional, mutational, and méthylation analyses of CDKM2 (p 16/MTS1 ) in primary and metastatic prostate cancer. Genes, Chromosomes Cancer 1997; 19: 90-96.
  • Flsieh CJ, Klump B, Flolzmann K, Borchard F, Gregor M, Porchen R. Hyperméthylation of the p 16/IMK4A promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. Cancer Res. 1998; 58: 3942-3945.
  • Merio A, Herman JG, Mao L, et al. 51 CpG island méthylation is associated with transcriptional silencing of the tumor suppressor pi 6/CDKM2/MTSI in human cancers. Mature Med 1995; 1: 686-692.
  • Jones PA. Altering gene expression with 5- azacytidine. Cell 1985; 40: 485-486.
Yıl 1999, Cilt: 12 Sayı: 4, 3 - 208, 03.12.2016

Öz

Kaynakça

  • liolodner RD, hall MR, Lipford J, et al. Human mismatch repair genes and their association with hereditary non-polyposis colon cancer. Cold Spring harb Symp Quant Biol 1994; 59: 351-338.
  • Rubben II, Lutzeyer It', Wallace DMA. The epidemiology and etiology of bladder cancer. Bladder Cancer. Berlin Heidelberg. Springer Verlag, 1985; 32-61.
  • Bender CM, Fao MM, Jones PA. Inhibition of DMA methylation by 5-aza-2 -deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 1998; I; 58: 95-101.
  • Sherr CJ. Mammalian Q1 cyclins. Cell 1993; 73: 1059-1065.
  • Xiong Y, Hannon GJ, Zhang H, Casso D, Robayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Mature 1993; 366: 701-704.
  • Hartwell LH, Winert TA. Checkpoints: controls that ensure the order of cell cycle events. Science 1989: 246: 629-634.
  • Ramb A, Liu Q, Harshman R, et al. Rates of pl6 (MTS1) mutations in primary tumors with 9p loss. Science 1994; 265: 415-417.
  • Cairns P, Mao L, Merlo A, Lee DJ, Schwab D, Eby Y, Tokino R, van der Riet P, Blaugrund JE, Sisdransky D: Rates of pi 6 (MTS1) mutations in primary tumors with 9p loss. Science 1994; 265: 415-416.
  • Miyamoto H, Shuın T, Torigo S, Iwasaki Y, Rubota Y. RB gene mutations in primary human bladder cancer. Br J Cancer 1995; 71: 831-835.
  • Levine AJ, Momand J, Finaly C.A. The p53 Tumor suppressor gene. Mature 1991; 351: 453-456.
  • Fountain JW, Rarayiogou M, Ernstoff MS, et al. Homozygous deletions within human chromosome band 9p21 in melanoma. Proc Mail Acad Sci USA 1992:89: 10557-10561.
  • Olopade Ol, Boh lander SR, Pomykala H, Maltepe E, Van Melle E, Le Beau MM. Mapping of the shortest region of overlap of deletions of the short arm of chromosome 9 associated with human neoplasia. Genomics 1992; 14: 431-443.
  • Olopade OL Buchhagen DL, Malik R, et al. Homozygous loss of the interferon gene defines the critical region on 9p that is deleted in lung cancer. Cancer Res 1993; 53: 2410-2415.
  • Olopade Ol, Jenkins RB, Ranson DT, et al. Molecular analysis of deletions of short arm of chromosome 9 in human gliomas. Cancer Res 1992; 52: 2523-2529.
  • Van der Riet P, Mawroz II, 11 ruban RH, et at. Frequent loss of chromosome 9p21-22 early in head and neck cancer progression. Cancer Res 1994; 54: 1156-1158.
  • Gonzalez-Zulueta M, Atsuko S, Ohneseıt PF, et al. High frequency of chromosome 9p allelic loss and CDRM2 tumor suppressor gene alterations in squamous cell carcinoma of bladder. J Mail Cl 1995; 87: 1383-1392.
  • 7. Stadler WM, Sherman J, Bohlander SR, Roulston D, Dreyling M, Rukstalis D. Homozygous deletions within chromosomal bands 9p21-22 in bladder cancer. Cancer Res 1994; 54: 2060-2063.
  • Gibas Z, Prout GR, Connolly JG, Pontes JE, Sandberg AA. Monrandom chromosomal changes in transitional cell carcinoma of the bladder. Cancer Res 1984:44: 1257-1264.
  • Rnowles MA, Elder PA, Williamson M, Cairns JP, Shaw ME, Law MG. Allotype of human bladder cancer. Cancer Res 1994; 54: 531-538.
  • Türkeri LM, Akdaş G, Özyürek M, Akdaş A. The influence of chromosome 9 and blood group antigen abnormalities on tumor behavior in carcinoma of the bladder. Üroloji Bülteni 1997; 8: 201-205.
  • Ramb A, Gruis MA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264: 436-440.
  • Cairns P, Tokino R, Eby Y, Sidransky D. Homozygous deletions of 9p21 in primary human bladder tumors detected by comparative multiplex polymerase chain reaction. Cancer Res 1994; 54: 1422-1424.
  • Orlow I, Lacombe L, Hannon GJ, et al. Deletion of the pl6 and pi5 genes in human bladder tumors. J Matl Cancer Inst 1995; 87: 1524-1529.
  • Gruis MA, Weaver-Feldhaus J, Liu Q, et al. Genetic evidence in melanoma and bladder cancers that pI6 and p53 function in separate pathways of tumor suppression. Am J Pathol 1995; 146: 1199- 1206.
  • Sarkis /IS, Dalbagni G, Cordon C, et al. Association of p53 nuclear over-expression and tumor progression in carcinoma in situ of the bladder. J Urol 1994; 152 (2 Pt I): 388-392.
  • Dalbagni G, Presti J, Ruter V, Pair WR, Cordon-Cardo
  • C. Genetic alterations in bladder cancer. Lancet 1993; 342: 469-471.
  • Gonzalez-Zulueta M, Bender CM, Yang /Î5, et al. Méthylation of the 5' CpG island of the pl6/CDKM2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res 1995; 55: 4531-4535.
  • Li E, Beard C, Jaenisch R. Role for DMA méthylation ingenomic imprinting, nature 1993; 366: 362-365.
  • Peinberg, AP, and Vogelstein B. flypomethylation distinguishes genes of some human cancers from their normal counterparts, nature 1983; 301:89-91.
  • Jones PA. DnA méthylation errors and cancer. Cancer Res 1996; 56, 2463-2467.
  • Bird AP. CpG-rich islands and the function of DnA méthylation, nature 1986; 321: 209-213.
  • Baylin SB, Makos M, Wu JJ, et al. Abnormal patterns of the DnA méthylation in human neoplasia: Potential consequences for tumor progression. Cancer Cells 1991: 3: 383-390.
  • Herman JG, Latif F, Weng YK, et al. Silencing of the VP1L tumor-suppressor gene by DnA méthylation in renal carcinoma. Proc natl Acad Sci USA 1994; 91: 9700-9704.
  • Feinberg, AP, Gehrke CW, Kuo KC, Ehrlich M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 1988; 48:
  • -1 161.
  • Peinberg AP, Vogelstein B. flypomethylation distinguishes genes of some human cancers from their normal counterparts, nature 1983; 301: 89- 92.
  • Baylin SB, Fearon ER, Vogelstein B, et al. flypernméthylation of the 5 region of the calcitonin gene is a property of human lymphoid and acute myeloid malignancies. Blood 1987; 70: 412-417.
  • Kauitiainen TL, Jones PA. DnA methyltransferase levels in tumorigenic and nontumorigenic cells in culture. J Biol Chem 1986; 261: 1594-1598.
  • Singer-Sam J, LeBon JM. Tanguay RL, Riggs AD. A quantitative Flpall-PCR assay to measure méthylation of DnA from a small number of cells, nucleic Acids Res 1990; 18: 687.
  • Southern EM. Detection of specific sequences
  • among DMA fragments separted by gel
  • electrophoresis. J Mol Biol 1975; 98: 503-517.
  • Gonzalgo ML, Liang G, Spruck 111 Cfl, Zingg JM,
  • Rideout WM, Jones P. Identification and
  • characterization of differentially methylated regions of genomic DMA by methylation-sensitive arbitrarily primed PCR. Cancer Research 1997; 57: 594-599.
  • Bird AP. CpG-rich islands and the function of DMA méthylation. Mature 1986; 321: 209-213.
  • Liu WM, Schmid CW. Proposed roles for DMA méthylation in Alu transcriptional repression and mutational inactivation, nucleic Acids Res 1993; 21: 1351-1359.
  • Ferguson-Smith AC, Sasaki FI, Cattanach BM, Surani MA. Parental-origin-specific epigenetic modification of the mouse FI 19 gene. Mature 1993; 362: 751- 755.
  • Jarrard DF, Bova GS, Ewing CM, et al. Deletional, mutational, and méthylation analyses of CDKM2 (p 16/MTS1 ) in primary and metastatic prostate cancer. Genes, Chromosomes Cancer 1997; 19: 90-96.
  • Flsieh CJ, Klump B, Flolzmann K, Borchard F, Gregor M, Porchen R. Hyperméthylation of the p 16/IMK4A promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. Cancer Res. 1998; 58: 3942-3945.
  • Merio A, Herman JG, Mao L, et al. 51 CpG island méthylation is associated with transcriptional silencing of the tumor suppressor pi 6/CDKM2/MTSI in human cancers. Mature Med 1995; 1: 686-692.
  • Jones PA. Altering gene expression with 5- azacytidine. Cell 1985; 40: 485-486.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Bölüm Reviews
Yazarlar

Cevdet Kaya Bu kişi benim

Levent Türkeri Bu kişi benim

Atıf Akdaş Bu kişi benim

Yayımlanma Tarihi 3 Aralık 2016
Yayımlandığı Sayı Yıl 1999 Cilt: 12 Sayı: 4

Kaynak Göster

APA Kaya, C., Türkeri, L., & Akdaş, A. (2016). METHYLATION OF THE 5’ CpG ISLANDS AND BLADDER CANCER PATHOGENESIS. Marmara Medical Journal, 12(4), 3-208.
AMA Kaya C, Türkeri L, Akdaş A. METHYLATION OF THE 5’ CpG ISLANDS AND BLADDER CANCER PATHOGENESIS. Marmara Med J. Haziran 2016;12(4):3-208.
Chicago Kaya, Cevdet, Levent Türkeri, ve Atıf Akdaş. “METHYLATION OF THE 5’ CpG ISLANDS AND BLADDER CANCER PATHOGENESIS”. Marmara Medical Journal 12, sy. 4 (Haziran 2016): 3-208.
EndNote Kaya C, Türkeri L, Akdaş A (01 Haziran 2016) METHYLATION OF THE 5’ CpG ISLANDS AND BLADDER CANCER PATHOGENESIS. Marmara Medical Journal 12 4 3–208.
IEEE C. Kaya, L. Türkeri, ve A. Akdaş, “METHYLATION OF THE 5’ CpG ISLANDS AND BLADDER CANCER PATHOGENESIS”, Marmara Med J, c. 12, sy. 4, ss. 3–208, 2016.
ISNAD Kaya, Cevdet vd. “METHYLATION OF THE 5’ CpG ISLANDS AND BLADDER CANCER PATHOGENESIS”. Marmara Medical Journal 12/4 (Haziran 2016), 3-208.
JAMA Kaya C, Türkeri L, Akdaş A. METHYLATION OF THE 5’ CpG ISLANDS AND BLADDER CANCER PATHOGENESIS. Marmara Med J. 2016;12:3–208.
MLA Kaya, Cevdet vd. “METHYLATION OF THE 5’ CpG ISLANDS AND BLADDER CANCER PATHOGENESIS”. Marmara Medical Journal, c. 12, sy. 4, 2016, ss. 3-208.
Vancouver Kaya C, Türkeri L, Akdaş A. METHYLATION OF THE 5’ CpG ISLANDS AND BLADDER CANCER PATHOGENESIS. Marmara Med J. 2016;12(4):3-208.