BibTex RIS Cite

GC-MS analysis of fluoxetine and its active metabolite norfluoxetine in human urine

Year 2010, Volume: 14 Issue: 2, 98 - 103, 03.03.2014

Abstract

ABSTRACT: A gas chromatographic-mass spectrometric (GC-MS) method was developed
for detection of fluoxetine and its active metabolite norfluoxetine in urine. Liquid and solid
phase extraction were applied to urine samples using maprotiline as an internal standard
(IS). The GC-MS analysis were carried out using HP-5MS capillary column. The linearity
ranges of the method were 5-75 ng mL-1 for fluoxetine and 6-125 ng mL-1 for norfluoxetine by
solid phase extraction (SPE), and 10-80 ng mL-1 for fluoxetine and also norfluoxetine by liquid-
liquid extraction (LLE). Also the range of detection limits were between 1-10 ng mL-1, the
range of quantification limits were between 5-10 ng mL-1 for fluoxetine and norfluoxetine by
both SPE and LLE. The range of recoveries were between 87 -109 % by both SPE and LLE for
analytes. The developed method allowed clinical and toxicological analysis of fluoxetine and
norfluoxetine in urine samples.
KEY WORDS: Fluoxetine; Norfluoxetine; Gas Chromatography-Mass Spectrometry; Liquid-
Liquid Extraction; Solid-Phase Extraction.

References

  • Sampson SM, Treating depression with selective sero- tonin reuptake inhibitors: a practical approach. Mayo Clin Proc, 76 : 739-744, 2001.
  • Wille SMR, Hee PV, Neels HM, Peteghem CHV, Lam- bert WE. Comparison of electron and chemical ioniza- tion modes by validation of a quantitative gas chroma- tographic-mass spectrometric assay of new generation antidepressants and their active metabolites in plasma. J Chromatogr A, 1176: 236-245, 2007.
  • Flores JR, Nevado JJB, Peňalvo GC, Diez NM. Develop- ment and validation method for determination of fluox- etine and its main metabolite norfluoxetine by nonaque- ous capillary electrophoresis in human urine. Talanta, 65: 163-171, 2005.
  • Crifasi JA, Le NX, Long C. Simultaneous identification and quantitation of fluoxetine and its metabolite nor- fluoxetine in biological samples by GC-MS. J Anal Toxi- col, 21: 415-419, 1997.
  • Dixit V, Nguyen H, Dixit VM. Solid-phase extraction of fluoxetine and norfluoxetine from serum with gas chro- matography-electron capture detection. J Chromatogr Biomed App, 563: 379-384, 1991.
  • Nash JF, Bopp RJ, Carmichael RH, Farid KZ, Lemberg- er L. Determination of fluoxetine and norfluoxetine in plasma by Gas Chromatography with electron-capture detection. Clin Chem, 28: 2100-2102, 1982.
  • Fontanille P, Jourdil N, Villier C, Bessard G. Direct anal- ysis of fluoxetine and norfluoxetine in plasma by gas chromatography with nitrogen-phosphorus detection. J Chromatogr B, 692: 337-343, 1997.
  • Gunnar T, Mykkänen S, Ariniemi K, Lillsunde P. Vali- dated semiquantitative/quantitative screening of 51 drugs in whole blood as silylated derivatives by gas chromatography-selected ion monitoring mass spec- trometry and gas chromatography electron capture de- tection. J Chromatogr B, 806: 205-219, 2004.
  • Fernandes C, Hoeck EV, Sandra P, Lanças FM. Determi- nation of fluoxetine in plasma by gas chromatography- mass spectrometry using stir bar sorptive extraction. Anal Chim Acta, 614: 201-207, 2008.
  • Maurer HH, Friedrich JB. Screening procedure for de- tection of antidepressants of the selective Serotonin Re- uptake Inhibitor Type and their Metabolites in Urine as Part of a Modified Systematic Toxicological Analysis Procedure using Gas Chromatography-Mass Spectrom- etry. J Anal Toxicol, 24: 340-347, 2000.
  • Nevado JJB, Llerena MJV, Cabanillas CG, Robledo VR. Screening of citalopram, fluoxetine and their metabolites in human urine samples by gas chromatography–mass spectrometry: A global robustness/ruggedness study. J Chromatogr A, 1123: 130-133, 2006.
  • Petinal CS, Lamas JP, Jares CG, Llompart M, Cela R. Rapid screening of selective serotonin re-uptake inhibi- tors in urine samples using solid-phase microextraction gas chromatography-mass spectrometry. Anal Bioanal Chem, 382: 1351-1359, 2005.
  • Wille SMR, Maudes KE, Peteghem CHV, Lambert WEE. Development of a solid phase extraction for 13 ‘new’ generation antidepressants and their active metabolites for gas chromatographic–mass spectrometric analysis. J Chromatogr A, 1098: 19-29, 2005.
  • Erturk S, Cetin SM, Atmaca S, Ersoy L, Baktır GA. Sensi- tive HPLC method for the determination of fluoxetine and norfluoxetine in human plasma with fluorescence detection. Ther Drug Monit, 27 (1) : 38-43, 2005.
  • Li KM, Thompson MR, McGregor IS. Rapid quantita- tion of fluoxetine and norfluoxetine in serum by micro- disc solid-phase extraction with high-performance liq- uid chromatography–ultraviolet absorbance detection. J Chromatogr B, 804: 319-326, 2004.
  • LLerena A, Dorado P, Berecz R, Gonzáles A, Norberto MJ, Rubai A, Cáceres M. Determination of fluoxetine and norfluoxetine in human plasma by high-performance liquid chromatography with ultraviolet detection in psy- chiatric patients. J Chromatogr B, 783: 25-31, 2003.
  • Vlase L, Imre S, Leucuta S. Determination of fluoxet- ine and its N-demethyl metabolite in human plasma by high-performance liquid chromatography. Talanta, 66: 659-663, 2005
  • Sabbioni C, Bugamelli F, Varani G, Mercolini L, Musen- ga A, Saracino MA, Fanali S, Raggi MA. A rapid HPLC- DAD method for the analysis of fluoxetine and norfluox- etine in plasma from overdose patients. J Pharm Biomed Anal, 36: 351-356, 2004.
  • Fernandes C, Neto AJS, Rodrigues JC, Alves C, Lanças FM. Solid-phase microextraction–liquid chromatogra- phy (SPME–LC) determination of fluoxetine and nor- fluoxetine in plasma using a heated liquid flow through interface. J Chromatogr B, 847: 217-223, 2007.
  • Feitas DF, Porto CED, Vieira EP, Siqueira MEPB. Three- phase, liquid-phase microextraction combined with high performance liquid chromatography-fluorescence detec- tion for the simultaneous determination of fluoxetine and norfluoxetine in human plasma. J Pharm Biomed Anal, 51: 170-177, 2010.
  • Reddy BV, Suresh KVNR, Sreeramulu J. Simultaneous determination of olanzapine and fluoxetine by HPLC. Chromatographia, 66: 111-114, 2007.
  • Vera MC, Lucena R, Cárdenas S. Combined use of carbon nanotubes and ionic liquid to improve the determination of antidepressants in urine samples by liquid chromatog- raphy. Anal Bioanal Chem, 391: 1139-1145, 2008.
  • Saber AL. On-line solid phase extraction coupled to cap- illary LC-ESI-MS for determination of fluoxetine in hu- man blood plasma. Talanta, 78: 295-299, 2009.
  • Neto AJS, Bergquist J, Lanças FM, Sjöberg PJR. Simulta- neous analysis of five antidepressant drugs using direct injection of biofluids in a capillary restricted-access me- dia-liquid chromatography–tandem mass spectrometry system. J Chromatogr A, 1189: 514-522, 2008.
  • Green R, Houghton R, Scarth J, Gregory C. Determi- nation of fluoxetine and its major active metabolite nor- fluoxetine in human plasma by liquid chromatography- tandem mass spectrometry. Chromatographia, 55: 133- 136, 2002.
  • Nevado JJB, Salcedo AMC, Llerena MJV, Nuevo EA. Method development and validation for the simulta- neous determination of fluoxetine and fluvoxamine in pharmaceutical preparations by capillary electrophore- sis. Anal Chim Acta, 417: 169-176, 2000.
  • Bramley RK, Bullock DG, Garcia JR. Quality Control and Assesment, in:Clarke’s analysis of Drugs and Poi- sons, Editors: A.C. Moffat, M. D. Osselton, B. Widdop, Pharmaceutical Press, third ed., London, 2005, pp. 161- 172.
  • Berzas JJ, Alañón A, Lázaro JA. Cyclodextrin enhanced spectrofluorimetric determination of fluoxetine in phar- maceuticals and biological fluids. Talanta, 58: 301-309, 2002.

GC-MS analysis of fluoxetine and its active metabolite norfluoxetine in human urine

Year 2010, Volume: 14 Issue: 2, 98 - 103, 03.03.2014

Abstract

References

  • Sampson SM, Treating depression with selective sero- tonin reuptake inhibitors: a practical approach. Mayo Clin Proc, 76 : 739-744, 2001.
  • Wille SMR, Hee PV, Neels HM, Peteghem CHV, Lam- bert WE. Comparison of electron and chemical ioniza- tion modes by validation of a quantitative gas chroma- tographic-mass spectrometric assay of new generation antidepressants and their active metabolites in plasma. J Chromatogr A, 1176: 236-245, 2007.
  • Flores JR, Nevado JJB, Peňalvo GC, Diez NM. Develop- ment and validation method for determination of fluox- etine and its main metabolite norfluoxetine by nonaque- ous capillary electrophoresis in human urine. Talanta, 65: 163-171, 2005.
  • Crifasi JA, Le NX, Long C. Simultaneous identification and quantitation of fluoxetine and its metabolite nor- fluoxetine in biological samples by GC-MS. J Anal Toxi- col, 21: 415-419, 1997.
  • Dixit V, Nguyen H, Dixit VM. Solid-phase extraction of fluoxetine and norfluoxetine from serum with gas chro- matography-electron capture detection. J Chromatogr Biomed App, 563: 379-384, 1991.
  • Nash JF, Bopp RJ, Carmichael RH, Farid KZ, Lemberg- er L. Determination of fluoxetine and norfluoxetine in plasma by Gas Chromatography with electron-capture detection. Clin Chem, 28: 2100-2102, 1982.
  • Fontanille P, Jourdil N, Villier C, Bessard G. Direct anal- ysis of fluoxetine and norfluoxetine in plasma by gas chromatography with nitrogen-phosphorus detection. J Chromatogr B, 692: 337-343, 1997.
  • Gunnar T, Mykkänen S, Ariniemi K, Lillsunde P. Vali- dated semiquantitative/quantitative screening of 51 drugs in whole blood as silylated derivatives by gas chromatography-selected ion monitoring mass spec- trometry and gas chromatography electron capture de- tection. J Chromatogr B, 806: 205-219, 2004.
  • Fernandes C, Hoeck EV, Sandra P, Lanças FM. Determi- nation of fluoxetine in plasma by gas chromatography- mass spectrometry using stir bar sorptive extraction. Anal Chim Acta, 614: 201-207, 2008.
  • Maurer HH, Friedrich JB. Screening procedure for de- tection of antidepressants of the selective Serotonin Re- uptake Inhibitor Type and their Metabolites in Urine as Part of a Modified Systematic Toxicological Analysis Procedure using Gas Chromatography-Mass Spectrom- etry. J Anal Toxicol, 24: 340-347, 2000.
  • Nevado JJB, Llerena MJV, Cabanillas CG, Robledo VR. Screening of citalopram, fluoxetine and their metabolites in human urine samples by gas chromatography–mass spectrometry: A global robustness/ruggedness study. J Chromatogr A, 1123: 130-133, 2006.
  • Petinal CS, Lamas JP, Jares CG, Llompart M, Cela R. Rapid screening of selective serotonin re-uptake inhibi- tors in urine samples using solid-phase microextraction gas chromatography-mass spectrometry. Anal Bioanal Chem, 382: 1351-1359, 2005.
  • Wille SMR, Maudes KE, Peteghem CHV, Lambert WEE. Development of a solid phase extraction for 13 ‘new’ generation antidepressants and their active metabolites for gas chromatographic–mass spectrometric analysis. J Chromatogr A, 1098: 19-29, 2005.
  • Erturk S, Cetin SM, Atmaca S, Ersoy L, Baktır GA. Sensi- tive HPLC method for the determination of fluoxetine and norfluoxetine in human plasma with fluorescence detection. Ther Drug Monit, 27 (1) : 38-43, 2005.
  • Li KM, Thompson MR, McGregor IS. Rapid quantita- tion of fluoxetine and norfluoxetine in serum by micro- disc solid-phase extraction with high-performance liq- uid chromatography–ultraviolet absorbance detection. J Chromatogr B, 804: 319-326, 2004.
  • LLerena A, Dorado P, Berecz R, Gonzáles A, Norberto MJ, Rubai A, Cáceres M. Determination of fluoxetine and norfluoxetine in human plasma by high-performance liquid chromatography with ultraviolet detection in psy- chiatric patients. J Chromatogr B, 783: 25-31, 2003.
  • Vlase L, Imre S, Leucuta S. Determination of fluoxet- ine and its N-demethyl metabolite in human plasma by high-performance liquid chromatography. Talanta, 66: 659-663, 2005
  • Sabbioni C, Bugamelli F, Varani G, Mercolini L, Musen- ga A, Saracino MA, Fanali S, Raggi MA. A rapid HPLC- DAD method for the analysis of fluoxetine and norfluox- etine in plasma from overdose patients. J Pharm Biomed Anal, 36: 351-356, 2004.
  • Fernandes C, Neto AJS, Rodrigues JC, Alves C, Lanças FM. Solid-phase microextraction–liquid chromatogra- phy (SPME–LC) determination of fluoxetine and nor- fluoxetine in plasma using a heated liquid flow through interface. J Chromatogr B, 847: 217-223, 2007.
  • Feitas DF, Porto CED, Vieira EP, Siqueira MEPB. Three- phase, liquid-phase microextraction combined with high performance liquid chromatography-fluorescence detec- tion for the simultaneous determination of fluoxetine and norfluoxetine in human plasma. J Pharm Biomed Anal, 51: 170-177, 2010.
  • Reddy BV, Suresh KVNR, Sreeramulu J. Simultaneous determination of olanzapine and fluoxetine by HPLC. Chromatographia, 66: 111-114, 2007.
  • Vera MC, Lucena R, Cárdenas S. Combined use of carbon nanotubes and ionic liquid to improve the determination of antidepressants in urine samples by liquid chromatog- raphy. Anal Bioanal Chem, 391: 1139-1145, 2008.
  • Saber AL. On-line solid phase extraction coupled to cap- illary LC-ESI-MS for determination of fluoxetine in hu- man blood plasma. Talanta, 78: 295-299, 2009.
  • Neto AJS, Bergquist J, Lanças FM, Sjöberg PJR. Simulta- neous analysis of five antidepressant drugs using direct injection of biofluids in a capillary restricted-access me- dia-liquid chromatography–tandem mass spectrometry system. J Chromatogr A, 1189: 514-522, 2008.
  • Green R, Houghton R, Scarth J, Gregory C. Determi- nation of fluoxetine and its major active metabolite nor- fluoxetine in human plasma by liquid chromatography- tandem mass spectrometry. Chromatographia, 55: 133- 136, 2002.
  • Nevado JJB, Salcedo AMC, Llerena MJV, Nuevo EA. Method development and validation for the simulta- neous determination of fluoxetine and fluvoxamine in pharmaceutical preparations by capillary electrophore- sis. Anal Chim Acta, 417: 169-176, 2000.
  • Bramley RK, Bullock DG, Garcia JR. Quality Control and Assesment, in:Clarke’s analysis of Drugs and Poi- sons, Editors: A.C. Moffat, M. D. Osselton, B. Widdop, Pharmaceutical Press, third ed., London, 2005, pp. 161- 172.
  • Berzas JJ, Alañón A, Lázaro JA. Cyclodextrin enhanced spectrofluorimetric determination of fluoxetine in phar- maceuticals and biological fluids. Talanta, 58: 301-309, 2002.
There are 28 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Münevver Açıkkol This is me

Dilek Salkım This is me

Publication Date March 3, 2014
Published in Issue Year 2010 Volume: 14 Issue: 2

Cite

APA Açıkkol, M., & Salkım, D. (2014). GC-MS analysis of fluoxetine and its active metabolite norfluoxetine in human urine. Marmara Pharmaceutical Journal, 14(2), 98-103. https://doi.org/10.12991/mpj.01291
AMA Açıkkol M, Salkım D. GC-MS analysis of fluoxetine and its active metabolite norfluoxetine in human urine. J Res Pharm. March 2014;14(2):98-103. doi:10.12991/mpj.01291
Chicago Açıkkol, Münevver, and Dilek Salkım. “GC-MS Analysis of Fluoxetine and Its Active Metabolite Norfluoxetine in Human Urine”. Marmara Pharmaceutical Journal 14, no. 2 (March 2014): 98-103. https://doi.org/10.12991/mpj.01291.
EndNote Açıkkol M, Salkım D (March 1, 2014) GC-MS analysis of fluoxetine and its active metabolite norfluoxetine in human urine. Marmara Pharmaceutical Journal 14 2 98–103.
IEEE M. Açıkkol and D. Salkım, “GC-MS analysis of fluoxetine and its active metabolite norfluoxetine in human urine”, J Res Pharm, vol. 14, no. 2, pp. 98–103, 2014, doi: 10.12991/mpj.01291.
ISNAD Açıkkol, Münevver - Salkım, Dilek. “GC-MS Analysis of Fluoxetine and Its Active Metabolite Norfluoxetine in Human Urine”. Marmara Pharmaceutical Journal 14/2 (March 2014), 98-103. https://doi.org/10.12991/mpj.01291.
JAMA Açıkkol M, Salkım D. GC-MS analysis of fluoxetine and its active metabolite norfluoxetine in human urine. J Res Pharm. 2014;14:98–103.
MLA Açıkkol, Münevver and Dilek Salkım. “GC-MS Analysis of Fluoxetine and Its Active Metabolite Norfluoxetine in Human Urine”. Marmara Pharmaceutical Journal, vol. 14, no. 2, 2014, pp. 98-103, doi:10.12991/mpj.01291.
Vancouver Açıkkol M, Salkım D. GC-MS analysis of fluoxetine and its active metabolite norfluoxetine in human urine. J Res Pharm. 2014;14(2):98-103.

.