BibTex RIS Cite

In situ production of cationic lipid coated magnetic nanoparticles in multiple emulsions for gene delivery

Year 2016, Volume: 20 Issue: 2, 72 - 78, 02.02.2016

Abstract

References

  • del Pozo-Rodríguez A, Delgado D, Solinís MÁ, Pedraz JL, Echevarría E, Rodríguez JM, et al. Solid lipid nanoparticles as potential tools for gene therapy: In vivo protein expression after intravenous administration. Int J Pharm. 2010;385(1-2):157–62.
  • Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY. Magnetic nanoparticles: Preparation methods, structure and properties. Usp Khim [Internet]. 2005;74(6):539–74. Available from: <Go to ISI>://WOS:000231053600001
  • Lee MK, Chun SK, Choi WJ, Kim JK, Choi SH, Kim A, et al. The use of chitosan as a condensing agent to enhance emulsion-mediated gene transfer. Biomaterials. 2005;26:2147–56.
  • Ma Y, Zhang Z, Wang X, Xia W, Gu H. Insights into the mechanism of magnetofection using MNPs-PEI/pDNA/free PEI magnetofectins. Int J Pharm [Internet]. Elsevier B.V.; 2011;419(1-2):247–54. Available from: http://dx.doi.org/10.1016/j.ijpharm.2011.07.017
  • Schillinger U, Brill T, Rudolph C, Huth S, Gersting S, Krötz F, et al. Advances in magnetofection - Magnetically guided nucleic acid delivery. J Magn Magn Mater. 2005;293(1):501–8.
  • Vidal-Vidal J, Rivas J, López-Quintela M a. Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surfaces A Physicochem Eng Asp. 2006;288(1-3):44–51.
  • Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev [Internet]. Elsevier B.V.; 2010;62(3):284–304. Available from: http://dx.doi.org/10.1016/j.addr.2009.11.002
  • Zheng X, Lu J, Deng L, Xiong Y, Chen J. Preparation and characterization of magnetic cationic liposome in gene delivery. Int J Pharm. 2009;366(1-2):211–7.
  • Schweiger C, Pietzonka C, Heverhagen J, Kissel T. Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: Synthesis, stability, cytotoxicity and MR imaging. Int J Pharm [Internet]. Elsevier B.V.; 2011;408(1-2):130–7. Available from: http://dx.doi.org/10.1016/j.ijpharm.2010.12.046
  • Ying XY, Du YZ, Hong LH, Yuan H, Hu FQ. Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics. J Magn Magn Mater [Internet]. Elsevier; 2011;323(8):1088–93. Available from: http://dx.doi.org/10.1016/j.jmmm.2010.12.019
  • Mathew DS, Juang RS. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J. 2007;129(1-3):51–65.
  • Ozkaya T, Baykal a., Toprak MS, Koseoǧlu Y, Durmuş Z. Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization. J Magn Magn Mater. 2009;321(14):2145–9.
  • Eastoe J, Hollamby MJ, Hudson L. Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci [Internet]. 2006;128-130(2006):5–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17254535
  • Kechrakos D. Magnetic Nanoparticle Assemblies. Arxiv Prepr arXiv09074417 [Internet]. 2009;290:33. Available from: http://arxiv.org/abs/0907.4417
  • Zhi J, Wang Y, Lu Y, Ma J, Luo G. In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React Funct Polym. 2006;66(12):1552–8.
  • Li J, Wei X, Yuan Y. Synthesis of magnetic nanoparticles composed by Prussian blue and glucose oxidase for preparing highly sensitive and selective glucose biosensor. Sensors Actuators, B Chem. 2009;139(2):400–6.
  • Kumar A, Jena PK, Behera S, Lockey RF, Mohapatra S, Mohapatra S. Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine Nanotechnology, Biol Med [Internet]. Elsevier Inc.; 2010;6(1):64–9. Available from: http://dx.doi.org/10.1016/j.nano.2009.04.002
  • Durmus Z, Kavas H, Baykal a., Sozeri H, Alpsoy L, Elik SÜ, et al. Synthesis and characterization of l-carnosine coated iron oxide nanoparticles. J Alloys Compd. 2011;509(5):2555–61.
  • Mykhaylyk O, Vlaskou D, Tresilwised N, Pithayanukul P, Möller W, Plank C. Magnetic nanoparticle formulations for DNA and siRNA delivery. J Magn Magn Mater. 2007;311(1 SPEC. ISS.):275–81.
  • Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res [Internet]. Elsevier Ltd; 2010;62(2):144–9. Available from: http://dx.doi.org/10.1016/j.phrs.2010.01.014
  • Ugazio E, Cavalli R, Gasco MR. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). Int J Pharm [Internet]. 2002;241(2):341–4. Available from: http://www.sciencedirect.com/science/article/pii/S0378517302002685
  • Marengo E, Cavalli R, Caputo O, Rodriguez L, Gasco MR. Scale-up of the preparation process of solid lipid nanospheres. Part I. Int J Pharm [Internet]. 2000;205(1-2):3–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11000537
  • Serpe L, Catalano MG, Cavalli R, Ugazio E, Bosco O, Canaparo R, et al. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur J Pharm Biopharm [Internet]. 2004;58(3):673–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15451544
  • Ang D, Nguyen Q V., Kayal S, Preiser PR, Rawat RS, Ramanujan R V. Insights into the mechanism of magnetic particle assisted gene delivery. Acta Biomater [Internet]. Acta Materialia Inc.; 2011;7(3):1319–26. Available from: http://dx.doi.org/10.1016/j.actbio.2010.09.037
  • Ang D, Tay CY, Tan LP, Preiser PR, Ramanujan R V. In vitro studies of magnetically enhanced transfection in COS-7 cells. Mater Sci Eng C [Internet]. Elsevier B.V.; 2011;31(7):1445–57. Available from: http://dx.doi.org/10.1016/j.msec.2011.05.014
  • Vighi E, Montanari M, Ruozi B, Tosi G, Magli A, Leo E. Nuclear localization of cationic solid lipid nanoparticles containing Protamine as transfection promoter. Eur J Pharm Biopharm [Internet]. Elsevier B.V.; 2010;76(3):384–93. Available from: http://dx.doi.org/10.1016/j.ejpb.2010.07.012
  • Yuan H, Zhang W, Du YZ, Hu FQ. Ternary nanoparticles of anionic lipid nanoparticles/protamine/DNA for gene delivery. Int J Pharm [Internet]. Elsevier B.V.; 2010;392(1-2):224–31. Available from: http://dx.doi.org/10.1016/j.ijpharm.2010.03.025
  • del Pozo-Rodríguez a., Delgado D, Solinís M a., Gascón a. R, Pedraz JL. Solid lipid nanoparticles: Formulation factors affecting cell transfection capacity. Int J Pharm. 2007;339(1-2):261–8.
  • Tomb Acz E, Turcu R, Socoliuc V, Ek As L V. Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magnetoresponsive nanosystems. Biochem Biophys Res Commun. 2015;
  • -
  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev [Internet]. Elsevier B.V.; 2011;63(1-2):24–46. Available from: http://dx.doi.org/10.1016/j.addr.2010.05.006
  • Utkan G, Sayar F, Batat P, Ide S, Kriechbaum M, Pişkin E. Synthesis and characterization of nanomagnetite particles and their polymer coated forms. J Colloid Interface Sci. 2011;353(2):372–9.
  • Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery : Common and different tasks for synthetic carriers. J Control Release [Internet]. Elsevier B.V.; 2011; Available from: http://dx.doi.org/10.1016/j.jconrel.2011.11.014
  • Choi SH, Jin S, Lee M, Lim S, Park J, Kim B-G, et al. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur J Pharm Biopharm [Internet]. 2008;68(3):545–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17881199
  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2(3):22–32.
  • -
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021.
  • Pan X, Guan J, Yoo JW, Epstein AJ, Lee LJ, Lee RJ. Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. Int J Pharm. 2008;358(1-2):263–70.
  • Vighi E, Ruozi B, Montanari M, Battini R, Leo E. pDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles. Int J Pharm [Internet]. Elsevier B.V.; 2010;389(1-2):254–61. Available from: http://dx.doi.org/10.1016/j.ijpharm.2010.01.030
  • He X, Huo H, Wang K, Tan W, Gong P, Ge J. Plasmid DNA isolation using amino-silica coated magnetic nanoparticles (ASMNPs). Talanta. 2007;73(4):764–9.
  • Song HP, Yang JY, Lo SL, Wang Y, Fan WM, Tang XS, et al. Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating tat peptide. Biomaterials [Internet]. Elsevier Ltd; 2010;31(4):769–78. Available from: http://dx.doi.org/10.1016/j.biomaterials.2009.09.085
  • Naylor LH. Reporter gene technology: the future looks bright. Biochem Pharmacol. 1999;58(5):749–57.
  • Pozo-rodríguez A, Solinís MA, Gascón AR, Pedraz JL. European Journal of Pharmaceutics and Biopharmaceutics Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. Eur J Pharm Biopharm [Internet]. Elsevier B.V.; 2009;71(2):181–9. Available from: http://dx.doi.org/10.1016/j.ejpb.2008.09.015
  • Chen JY, Liao YL, Wang TH, Lee WC. Transformation of Escherichia coli mediated by magnetic nanoparticles in pulsed magnetic field. Enzyme Microb Technol. 2006;39(3):366–70.
  • Li W, Nesselmann C, Zhou Z, Ong LL, Öri F, Tang G, et al. Gene delivery to the heart by magnetic nanobeads. J Magn Magn Mater. 2007;311(1 SPEC. ISS.):336–41.

In situ production of cationic lipid coated magnetic nanoparticles in multiple emulsions for gene delivery

Year 2016, Volume: 20 Issue: 2, 72 - 78, 02.02.2016

Abstract

Magnetic nanoparticles are effective delivery systems to target therapeutic genes by the attractive forces of magnetic fields. Curative effects depending on dose of nucleic acids or drugs increased, while cytotoxic effects minimized with these systems. In this study, a novel magnetic nanoparticle synthesis method was developed by combining advantages of microemulsion and multiple emulsion methods. Particle size, zeta potential, magnetization, complex formation with nucleic acids, DNase I protection ability, and cytotoxicity levels were examined. At last, magnetic nanoparticles were obtained with a promising synthesis method and it is determined that they are sufficiently small, non-toxic and have optimal surface properties for systemic delivery of nucleic acids.

References

  • del Pozo-Rodríguez A, Delgado D, Solinís MÁ, Pedraz JL, Echevarría E, Rodríguez JM, et al. Solid lipid nanoparticles as potential tools for gene therapy: In vivo protein expression after intravenous administration. Int J Pharm. 2010;385(1-2):157–62.
  • Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY. Magnetic nanoparticles: Preparation methods, structure and properties. Usp Khim [Internet]. 2005;74(6):539–74. Available from: <Go to ISI>://WOS:000231053600001
  • Lee MK, Chun SK, Choi WJ, Kim JK, Choi SH, Kim A, et al. The use of chitosan as a condensing agent to enhance emulsion-mediated gene transfer. Biomaterials. 2005;26:2147–56.
  • Ma Y, Zhang Z, Wang X, Xia W, Gu H. Insights into the mechanism of magnetofection using MNPs-PEI/pDNA/free PEI magnetofectins. Int J Pharm [Internet]. Elsevier B.V.; 2011;419(1-2):247–54. Available from: http://dx.doi.org/10.1016/j.ijpharm.2011.07.017
  • Schillinger U, Brill T, Rudolph C, Huth S, Gersting S, Krötz F, et al. Advances in magnetofection - Magnetically guided nucleic acid delivery. J Magn Magn Mater. 2005;293(1):501–8.
  • Vidal-Vidal J, Rivas J, López-Quintela M a. Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surfaces A Physicochem Eng Asp. 2006;288(1-3):44–51.
  • Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev [Internet]. Elsevier B.V.; 2010;62(3):284–304. Available from: http://dx.doi.org/10.1016/j.addr.2009.11.002
  • Zheng X, Lu J, Deng L, Xiong Y, Chen J. Preparation and characterization of magnetic cationic liposome in gene delivery. Int J Pharm. 2009;366(1-2):211–7.
  • Schweiger C, Pietzonka C, Heverhagen J, Kissel T. Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: Synthesis, stability, cytotoxicity and MR imaging. Int J Pharm [Internet]. Elsevier B.V.; 2011;408(1-2):130–7. Available from: http://dx.doi.org/10.1016/j.ijpharm.2010.12.046
  • Ying XY, Du YZ, Hong LH, Yuan H, Hu FQ. Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics. J Magn Magn Mater [Internet]. Elsevier; 2011;323(8):1088–93. Available from: http://dx.doi.org/10.1016/j.jmmm.2010.12.019
  • Mathew DS, Juang RS. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J. 2007;129(1-3):51–65.
  • Ozkaya T, Baykal a., Toprak MS, Koseoǧlu Y, Durmuş Z. Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization. J Magn Magn Mater. 2009;321(14):2145–9.
  • Eastoe J, Hollamby MJ, Hudson L. Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci [Internet]. 2006;128-130(2006):5–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17254535
  • Kechrakos D. Magnetic Nanoparticle Assemblies. Arxiv Prepr arXiv09074417 [Internet]. 2009;290:33. Available from: http://arxiv.org/abs/0907.4417
  • Zhi J, Wang Y, Lu Y, Ma J, Luo G. In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React Funct Polym. 2006;66(12):1552–8.
  • Li J, Wei X, Yuan Y. Synthesis of magnetic nanoparticles composed by Prussian blue and glucose oxidase for preparing highly sensitive and selective glucose biosensor. Sensors Actuators, B Chem. 2009;139(2):400–6.
  • Kumar A, Jena PK, Behera S, Lockey RF, Mohapatra S, Mohapatra S. Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine Nanotechnology, Biol Med [Internet]. Elsevier Inc.; 2010;6(1):64–9. Available from: http://dx.doi.org/10.1016/j.nano.2009.04.002
  • Durmus Z, Kavas H, Baykal a., Sozeri H, Alpsoy L, Elik SÜ, et al. Synthesis and characterization of l-carnosine coated iron oxide nanoparticles. J Alloys Compd. 2011;509(5):2555–61.
  • Mykhaylyk O, Vlaskou D, Tresilwised N, Pithayanukul P, Möller W, Plank C. Magnetic nanoparticle formulations for DNA and siRNA delivery. J Magn Magn Mater. 2007;311(1 SPEC. ISS.):275–81.
  • Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res [Internet]. Elsevier Ltd; 2010;62(2):144–9. Available from: http://dx.doi.org/10.1016/j.phrs.2010.01.014
  • Ugazio E, Cavalli R, Gasco MR. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). Int J Pharm [Internet]. 2002;241(2):341–4. Available from: http://www.sciencedirect.com/science/article/pii/S0378517302002685
  • Marengo E, Cavalli R, Caputo O, Rodriguez L, Gasco MR. Scale-up of the preparation process of solid lipid nanospheres. Part I. Int J Pharm [Internet]. 2000;205(1-2):3–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11000537
  • Serpe L, Catalano MG, Cavalli R, Ugazio E, Bosco O, Canaparo R, et al. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur J Pharm Biopharm [Internet]. 2004;58(3):673–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15451544
  • Ang D, Nguyen Q V., Kayal S, Preiser PR, Rawat RS, Ramanujan R V. Insights into the mechanism of magnetic particle assisted gene delivery. Acta Biomater [Internet]. Acta Materialia Inc.; 2011;7(3):1319–26. Available from: http://dx.doi.org/10.1016/j.actbio.2010.09.037
  • Ang D, Tay CY, Tan LP, Preiser PR, Ramanujan R V. In vitro studies of magnetically enhanced transfection in COS-7 cells. Mater Sci Eng C [Internet]. Elsevier B.V.; 2011;31(7):1445–57. Available from: http://dx.doi.org/10.1016/j.msec.2011.05.014
  • Vighi E, Montanari M, Ruozi B, Tosi G, Magli A, Leo E. Nuclear localization of cationic solid lipid nanoparticles containing Protamine as transfection promoter. Eur J Pharm Biopharm [Internet]. Elsevier B.V.; 2010;76(3):384–93. Available from: http://dx.doi.org/10.1016/j.ejpb.2010.07.012
  • Yuan H, Zhang W, Du YZ, Hu FQ. Ternary nanoparticles of anionic lipid nanoparticles/protamine/DNA for gene delivery. Int J Pharm [Internet]. Elsevier B.V.; 2010;392(1-2):224–31. Available from: http://dx.doi.org/10.1016/j.ijpharm.2010.03.025
  • del Pozo-Rodríguez a., Delgado D, Solinís M a., Gascón a. R, Pedraz JL. Solid lipid nanoparticles: Formulation factors affecting cell transfection capacity. Int J Pharm. 2007;339(1-2):261–8.
  • Tomb Acz E, Turcu R, Socoliuc V, Ek As L V. Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magnetoresponsive nanosystems. Biochem Biophys Res Commun. 2015;
  • -
  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev [Internet]. Elsevier B.V.; 2011;63(1-2):24–46. Available from: http://dx.doi.org/10.1016/j.addr.2010.05.006
  • Utkan G, Sayar F, Batat P, Ide S, Kriechbaum M, Pişkin E. Synthesis and characterization of nanomagnetite particles and their polymer coated forms. J Colloid Interface Sci. 2011;353(2):372–9.
  • Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery : Common and different tasks for synthetic carriers. J Control Release [Internet]. Elsevier B.V.; 2011; Available from: http://dx.doi.org/10.1016/j.jconrel.2011.11.014
  • Choi SH, Jin S, Lee M, Lim S, Park J, Kim B-G, et al. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur J Pharm Biopharm [Internet]. 2008;68(3):545–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17881199
  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2(3):22–32.
  • -
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021.
  • Pan X, Guan J, Yoo JW, Epstein AJ, Lee LJ, Lee RJ. Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. Int J Pharm. 2008;358(1-2):263–70.
  • Vighi E, Ruozi B, Montanari M, Battini R, Leo E. pDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles. Int J Pharm [Internet]. Elsevier B.V.; 2010;389(1-2):254–61. Available from: http://dx.doi.org/10.1016/j.ijpharm.2010.01.030
  • He X, Huo H, Wang K, Tan W, Gong P, Ge J. Plasmid DNA isolation using amino-silica coated magnetic nanoparticles (ASMNPs). Talanta. 2007;73(4):764–9.
  • Song HP, Yang JY, Lo SL, Wang Y, Fan WM, Tang XS, et al. Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating tat peptide. Biomaterials [Internet]. Elsevier Ltd; 2010;31(4):769–78. Available from: http://dx.doi.org/10.1016/j.biomaterials.2009.09.085
  • Naylor LH. Reporter gene technology: the future looks bright. Biochem Pharmacol. 1999;58(5):749–57.
  • Pozo-rodríguez A, Solinís MA, Gascón AR, Pedraz JL. European Journal of Pharmaceutics and Biopharmaceutics Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. Eur J Pharm Biopharm [Internet]. Elsevier B.V.; 2009;71(2):181–9. Available from: http://dx.doi.org/10.1016/j.ejpb.2008.09.015
  • Chen JY, Liao YL, Wang TH, Lee WC. Transformation of Escherichia coli mediated by magnetic nanoparticles in pulsed magnetic field. Enzyme Microb Technol. 2006;39(3):366–70.
  • Li W, Nesselmann C, Zhou Z, Ong LL, Öri F, Tang G, et al. Gene delivery to the heart by magnetic nanobeads. J Magn Magn Mater. 2007;311(1 SPEC. ISS.):336–41.
There are 45 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hasan Akbaba This is me

Yusuf Selamet This is me

Ayşe Kantarcı This is me

Publication Date February 2, 2016
Published in Issue Year 2016 Volume: 20 Issue: 2

Cite

APA Akbaba, H., Selamet, Y., & Kantarcı, A. (2016). In situ production of cationic lipid coated magnetic nanoparticles in multiple emulsions for gene delivery. Marmara Pharmaceutical Journal, 20(2), 72-78. https://doi.org/10.12991/mpj.20162069254
AMA Akbaba H, Selamet Y, Kantarcı A. In situ production of cationic lipid coated magnetic nanoparticles in multiple emulsions for gene delivery. J Res Pharm. February 2016;20(2):72-78. doi:10.12991/mpj.20162069254
Chicago Akbaba, Hasan, Yusuf Selamet, and Ayşe Kantarcı. “In Situ Production of Cationic Lipid Coated Magnetic Nanoparticles in Multiple Emulsions for Gene Delivery”. Marmara Pharmaceutical Journal 20, no. 2 (February 2016): 72-78. https://doi.org/10.12991/mpj.20162069254.
EndNote Akbaba H, Selamet Y, Kantarcı A (February 1, 2016) In situ production of cationic lipid coated magnetic nanoparticles in multiple emulsions for gene delivery. Marmara Pharmaceutical Journal 20 2 72–78.
IEEE H. Akbaba, Y. Selamet, and A. Kantarcı, “In situ production of cationic lipid coated magnetic nanoparticles in multiple emulsions for gene delivery”, J Res Pharm, vol. 20, no. 2, pp. 72–78, 2016, doi: 10.12991/mpj.20162069254.
ISNAD Akbaba, Hasan et al. “In Situ Production of Cationic Lipid Coated Magnetic Nanoparticles in Multiple Emulsions for Gene Delivery”. Marmara Pharmaceutical Journal 20/2 (February 2016), 72-78. https://doi.org/10.12991/mpj.20162069254.
JAMA Akbaba H, Selamet Y, Kantarcı A. In situ production of cationic lipid coated magnetic nanoparticles in multiple emulsions for gene delivery. J Res Pharm. 2016;20:72–78.
MLA Akbaba, Hasan et al. “In Situ Production of Cationic Lipid Coated Magnetic Nanoparticles in Multiple Emulsions for Gene Delivery”. Marmara Pharmaceutical Journal, vol. 20, no. 2, 2016, pp. 72-78, doi:10.12991/mpj.20162069254.
Vancouver Akbaba H, Selamet Y, Kantarcı A. In situ production of cationic lipid coated magnetic nanoparticles in multiple emulsions for gene delivery. J Res Pharm. 2016;20(2):72-8.

.