Araştırma Makalesi
BibTex RIS Kaynak Göster

New-generation Jeffamine® D230 core amine, TRIS and carboxylterminated PAMAM dendrimers: Synthesis, characterization and the solubility application for a model NSAID drug Ibuprofen

Yıl 2017, Cilt: 21 Sayı: 2, 385 - 399, 01.04.2017
https://doi.org/10.12991/marupj.300924

Öz

Many therapeutically active drugs are poor water soluble and,
therefore, bioavailability of these molecules in the living cells
is low and a major problem. In this study, new-generation
Jeffamine® D230 core, amine (NH2), Tris(hydroxymethyl)
aminomethane (TRIS), and carboxyl (COOH) terminated
poly(amidoamine) PAMAM dendrimers (PAMAMs) were
synthesized. Synthesized new-generation PAMAMs were
characterized by 1H NMR, 13C NMR, ATR-FTIR, and
investigated as solubility enhancer of a sample non-steroidal
anti-inflammatory drug (NSAID) Ibuprofen (IBU). The effect
of generation size (D2-D4), concentration (0-2.0 mM), and
surface functional group (NH2, COOH, TRIS) of the synthesized
new-generation PAMAMs on the aqueous solubility of IBU was
also investigated. The observed solubility enhancement of IBU
was in the order of D4.COOH (18.21 mg/mL)> D3.COOH
(13.21 mg/mL)> D4.TRIS (10.30 mg/mL)> D2.COOH (8.55
mg/mL)> D3.TRIS (6.04 mg/mL)> D4.NH2 (4.56 mg/mL)>
D3.NH2 (3.36 mg/mL)> D2.TRIS (2.42 mg/mL)> D2.NH2 (1.86
mg/mL). Results showed that synthesized PAMAMs improved
the solubility of IBU significantly (30 to 247-

Kaynakça

  • 1. Beezer AE, King ASH, Martin IK, Mitchel JC, Twyman LJ, WainCF. Dendrimers as potential drug carriers; encapsulation ofacidic hydrophobes within water soluble PAMAM derivatives.Tetrahedron 2003;59: 3873-80.
  • 2. Carriers D. ReferenceMD Available from: http://www.reference.md/files/D004/mD004337.html [10 Dem 2016].
  • 3. Felice B, Prabhakaran MP, Rodriguez AP, Ramakrishna S.Drug delivery vehicles on a nano-engineering perspective.Mater Sci Eng C 2014;41: 178-95.
  • 4. Fox ME, Szoka FC, Frechet JMJ. Soluble Polymer Carriersfor the Treatment of Cancer: The Importance of MolecularArchitecture. Acc Chem Res 2009;42: 1141-51.
  • 5. Vandamme TF, Brobeck L. Poly (amidoamine) dendrimers asophthalmic vehicles for ocular delivery of pilocarpine nitrateand tropicamide. J Controlled Release 2005;102: 23-38.
  • 6. Jia L, Xu J-P, Wang H, Ji J. Polyamidoamine dendrimerssurface-engineered with biomimetic phosphorylcholine aspotential drug delivery carriers. Colloids Surf B 2011;84: 49-54.
  • 7. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H,Weener JW, et al. Dendrimers:: Relationship between structureand biocompatibility in vitro, and preliminary studies on thebiodistribution of 125I-labelled polyamidoamine dendrimersin vivo. J Controlled Release 2000;65: 133-48.
  • 8. Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier fordrug delivery. Prog Polym Sci 2014;39: 268-307.9. Zhang L, Pornpattananangkul D, Hu C-M, Huang C-M.Development of nanoparticles for antimicrobial drug delivery.Curr Med Chem 2010;17: 585-94.
  • 10. Gupta U, Agashe HB, Asthana A, Jain N. Dendrimers: novelpolymeric nanoarchitectures for solubility enhancement.Biomacromolecules 2006;7: 649-58.
  • 11. Ly TU, Tran NQ, Hoang TKD, Phan KN, Truong HN, NguyenCK. Pegylated dendrimer and its effect in fluorouracil loadingand release for enhancing antitumor activity. J BiomedNanotechnol 2013;9: 213-20.
  • 12. Kumar PD, Kumar PV, anneer Selvam T, Rao KS. Prolongeddrug delivery system of PEGylated PAMAM dendrimers witha anti-HIV drug. Res Pharm 2015;3.
  • 13. Ozturk K, Erturk AS, Sarisozen C, Tulu M, Calis S. Cytotoxicityand in vitro characterization studies of synthesized JeffaminecoredPAMAM dendrimers. J Microencapsul 2014;31: 127-36.
  • 14. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB,D’Emanuele A. The influence of surface modification on thecytotoxicity of PAMAM dendrimers. Int J Pharm 2003;252:263-66.
  • 15. Medina SH, El-Sayed ME. Dendrimers as carriers for deliveryof chemotherapeutic agents. Chem Rev 2009;109: 3141-57.
  • 16. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity.Adv Drug Delivery Rev 2005;57: 2215-37.
  • 17. Twyman LJ, Beezer AE, Esfand R, Hardy MJ, Mitchell JC. Thesynthesis of water soluble dendrimers, and their applicationas possible drug delivery systems. Tetrahedron Lett 1999;40:1743-46.
  • 18. Erturk AS, Gurbuz MU, Tulu M, Bozdoğan AE. WatersolubleTRIS-terminated PAMAM dendrimers: microwaveassistedsynthesis, characterization and Cu (ii) intradendrimercomplexes. RSC Adv 2015;5: 60581-95.
  • 19. Erturk AS, Tulu M, Bozdoğan AE, Parali T. Microwave assistedsynthesis of Jeffamine cored PAMAM dendrimers. Eur PolymJ 2014;52: 218-26.
  • 20. Yin R, Zhu Y, Tomalia D, Ibuki H. Architectural copolymers:rod-shaped, cylindrical dendrimers. J Am Chem Soc 1998;120:2678-79.
  • 21. Gurbuz MU, Erturk AS, Tulu M. Synthesis of surface modifiedTREN cored PAMAM dendrimers and their effects on thesolubility of sulfamethoxazole (SMZ) as an analogue antibioticdrug. Pharm Dev Technol 2016: 1-33.
  • 22. Erturk AS, Gurbuz MU, Tulu M. The effect of PAMAMdendrimer concentration, generation size and surfacefunctional group on the aqueous solubility of candesartancilexetil. Pharm Dev Technol 2016: 1-34.
  • 23. Kleinman MH, Flory JH, Tomalia DA, Turro NJ. Effect ofprotonation and PAMAM dendrimer size on the complexationand dynamic mobility of 2-naphthol. J Phys Chem B 2000;104:11472-79.
  • 24. Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M. Drugcomplexation, in vitro release and cellular entry of dendrimersand hyperbranched polymers. Int J Pharm 2003;259: 143-60.
  • 25. Higuchi T, Connors KA. Phase-solubility techniques. AdvanAnal Chem Instr 1965;4: 117-212.
  • 26. Feng ZV, Lyon JL, Croley JS, Crooks RM, Vanden Bout DA,Stevenson KJ. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles. An UndergraduateExperiment Exploring Catalytic Nanomaterials. Journal ofChemical Education 2009;86: 368.
  • 27. Zhao M, Sun L, Crooks RM. Preparation of Cu Nanoclusterswithin Dendrimer Templates. Journal of the AmericanChemical Society 1998;120: 4877-78.
  • 28. Chen P, Yang Y, Bhattacharya P, Wang P, Ke PC. A Tris-Dendrimer for Hosting Diverse Chemical Species. The Journalof Physical Chemistry C 2011;115: 12789-96.
  • 29. Chauhan AS, Jain NK, Diwan PV, Khopade AJ. Solubilityenhancement of indomethacin with poly(amidoamine)dendrimers and targeting to inflammatory regions of arthriticrats. J Drug Target 2004;12: 575-83.
  • 30. Devarakonda B, Hill R, Devilliers M. The effect of PAMAMdendrimer generation size and surface functional group onthe aqueous solubility of nifedipine. Int J Pharm 2004;284:133-40
  • 31. Yiyun C, Tongwen X. Dendrimers as potential drug carriers.Part I. Solubilization of non-steroidal anti-inflammatorydrugs in the presence of polyamidoamine dendrimers. Eur JMed Chem 2005;40: 1188-92.
  • 32. Chow DD, Karara AH. Characterization, dissolution andbioavailability in rats of ibuprofen-β-cyclodextrin complexsystem. Int J Pharm 1986;28: 95-101.

New-generation Jeffamine® D230 core amine, TRIS and carboxylterminated PAMAM dendrimers: Synthesis, characterization and the solubility application for a model NSAID drug Ibuprofen

Yıl 2017, Cilt: 21 Sayı: 2, 385 - 399, 01.04.2017
https://doi.org/10.12991/marupj.300924

Öz

Birçok terapötik olarak aktif olan ilaçların sudaki çözünürlüğü

zayıf ve bundan dolayı canlı hücrelerde biyoyararlanımları

düşük ve büyük bir problem oluşturmaktadır. Bu çalışmada,

yeni nesil Jeffamine® D230 çekirdekli amin (NH2),

Tris(hidroksimetil)aminometan (TRIS) ve karboksil (COOH)

sonlu poli(amidoamine) PAMAM dendrimerler (PAMAMs)

sentezlendi. Sentezlenen yeni tip PAMAMs’lar 1H NMR, 13C

NMR, ATR-FTIR kullanılarak karakterize edildi ve örnek bir

non-steroidal anti-inflamatuar ilaç (NSAID) olan Ibuprofen

(IBU) için çözünürlük arttırıcı olarak araştırıldı. Sentezlenen

yeni nesil PAMAMs’ların, jenerasyon büyüklüğünün (D2-D4),

konsantrasyonun (0-2.0 mM) ve yüzey fonksiyonel gruplarının

(NH2, COOH, TRIS), IBU’nun çözünürlüğüne olan etkisi ayrıca

araştırıldı. IBU’nun gözlemlenen çözünürlük artışı, D4.COOH

(18.21 mg/mL)> D3.COOH (13.21 mg/mL)> D4.TRIS (10.30

mg/mL)> D2.COOH (8.55 mg/mL)> D3.TRIS (6.04 mg/mL)>

D4.NH2 (4.56 mg/mL)> D3.NH2 (3.36 mg/mL)> D2.TRIS

(2.42 mg/mL)> D2.NH2 (1.86 mg/mL) sırasındadır. Sonuçlar

gösteriyor ki, sentezlenen PAMAMs’ların jenerasyon büyüklüğü

ve konsantrasyonun artmasıyla birlikte IBU’nu çözünürlüğü

önemli ölçüde artmıştır (30 ile 247 kat arası).

Kaynakça

  • 1. Beezer AE, King ASH, Martin IK, Mitchel JC, Twyman LJ, WainCF. Dendrimers as potential drug carriers; encapsulation ofacidic hydrophobes within water soluble PAMAM derivatives.Tetrahedron 2003;59: 3873-80.
  • 2. Carriers D. ReferenceMD Available from: http://www.reference.md/files/D004/mD004337.html [10 Dem 2016].
  • 3. Felice B, Prabhakaran MP, Rodriguez AP, Ramakrishna S.Drug delivery vehicles on a nano-engineering perspective.Mater Sci Eng C 2014;41: 178-95.
  • 4. Fox ME, Szoka FC, Frechet JMJ. Soluble Polymer Carriersfor the Treatment of Cancer: The Importance of MolecularArchitecture. Acc Chem Res 2009;42: 1141-51.
  • 5. Vandamme TF, Brobeck L. Poly (amidoamine) dendrimers asophthalmic vehicles for ocular delivery of pilocarpine nitrateand tropicamide. J Controlled Release 2005;102: 23-38.
  • 6. Jia L, Xu J-P, Wang H, Ji J. Polyamidoamine dendrimerssurface-engineered with biomimetic phosphorylcholine aspotential drug delivery carriers. Colloids Surf B 2011;84: 49-54.
  • 7. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H,Weener JW, et al. Dendrimers:: Relationship between structureand biocompatibility in vitro, and preliminary studies on thebiodistribution of 125I-labelled polyamidoamine dendrimersin vivo. J Controlled Release 2000;65: 133-48.
  • 8. Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier fordrug delivery. Prog Polym Sci 2014;39: 268-307.9. Zhang L, Pornpattananangkul D, Hu C-M, Huang C-M.Development of nanoparticles for antimicrobial drug delivery.Curr Med Chem 2010;17: 585-94.
  • 10. Gupta U, Agashe HB, Asthana A, Jain N. Dendrimers: novelpolymeric nanoarchitectures for solubility enhancement.Biomacromolecules 2006;7: 649-58.
  • 11. Ly TU, Tran NQ, Hoang TKD, Phan KN, Truong HN, NguyenCK. Pegylated dendrimer and its effect in fluorouracil loadingand release for enhancing antitumor activity. J BiomedNanotechnol 2013;9: 213-20.
  • 12. Kumar PD, Kumar PV, anneer Selvam T, Rao KS. Prolongeddrug delivery system of PEGylated PAMAM dendrimers witha anti-HIV drug. Res Pharm 2015;3.
  • 13. Ozturk K, Erturk AS, Sarisozen C, Tulu M, Calis S. Cytotoxicityand in vitro characterization studies of synthesized JeffaminecoredPAMAM dendrimers. J Microencapsul 2014;31: 127-36.
  • 14. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB,D’Emanuele A. The influence of surface modification on thecytotoxicity of PAMAM dendrimers. Int J Pharm 2003;252:263-66.
  • 15. Medina SH, El-Sayed ME. Dendrimers as carriers for deliveryof chemotherapeutic agents. Chem Rev 2009;109: 3141-57.
  • 16. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity.Adv Drug Delivery Rev 2005;57: 2215-37.
  • 17. Twyman LJ, Beezer AE, Esfand R, Hardy MJ, Mitchell JC. Thesynthesis of water soluble dendrimers, and their applicationas possible drug delivery systems. Tetrahedron Lett 1999;40:1743-46.
  • 18. Erturk AS, Gurbuz MU, Tulu M, Bozdoğan AE. WatersolubleTRIS-terminated PAMAM dendrimers: microwaveassistedsynthesis, characterization and Cu (ii) intradendrimercomplexes. RSC Adv 2015;5: 60581-95.
  • 19. Erturk AS, Tulu M, Bozdoğan AE, Parali T. Microwave assistedsynthesis of Jeffamine cored PAMAM dendrimers. Eur PolymJ 2014;52: 218-26.
  • 20. Yin R, Zhu Y, Tomalia D, Ibuki H. Architectural copolymers:rod-shaped, cylindrical dendrimers. J Am Chem Soc 1998;120:2678-79.
  • 21. Gurbuz MU, Erturk AS, Tulu M. Synthesis of surface modifiedTREN cored PAMAM dendrimers and their effects on thesolubility of sulfamethoxazole (SMZ) as an analogue antibioticdrug. Pharm Dev Technol 2016: 1-33.
  • 22. Erturk AS, Gurbuz MU, Tulu M. The effect of PAMAMdendrimer concentration, generation size and surfacefunctional group on the aqueous solubility of candesartancilexetil. Pharm Dev Technol 2016: 1-34.
  • 23. Kleinman MH, Flory JH, Tomalia DA, Turro NJ. Effect ofprotonation and PAMAM dendrimer size on the complexationand dynamic mobility of 2-naphthol. J Phys Chem B 2000;104:11472-79.
  • 24. Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M. Drugcomplexation, in vitro release and cellular entry of dendrimersand hyperbranched polymers. Int J Pharm 2003;259: 143-60.
  • 25. Higuchi T, Connors KA. Phase-solubility techniques. AdvanAnal Chem Instr 1965;4: 117-212.
  • 26. Feng ZV, Lyon JL, Croley JS, Crooks RM, Vanden Bout DA,Stevenson KJ. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles. An UndergraduateExperiment Exploring Catalytic Nanomaterials. Journal ofChemical Education 2009;86: 368.
  • 27. Zhao M, Sun L, Crooks RM. Preparation of Cu Nanoclusterswithin Dendrimer Templates. Journal of the AmericanChemical Society 1998;120: 4877-78.
  • 28. Chen P, Yang Y, Bhattacharya P, Wang P, Ke PC. A Tris-Dendrimer for Hosting Diverse Chemical Species. The Journalof Physical Chemistry C 2011;115: 12789-96.
  • 29. Chauhan AS, Jain NK, Diwan PV, Khopade AJ. Solubilityenhancement of indomethacin with poly(amidoamine)dendrimers and targeting to inflammatory regions of arthriticrats. J Drug Target 2004;12: 575-83.
  • 30. Devarakonda B, Hill R, Devilliers M. The effect of PAMAMdendrimer generation size and surface functional group onthe aqueous solubility of nifedipine. Int J Pharm 2004;284:133-40
  • 31. Yiyun C, Tongwen X. Dendrimers as potential drug carriers.Part I. Solubilization of non-steroidal anti-inflammatorydrugs in the presence of polyamidoamine dendrimers. Eur JMed Chem 2005;40: 1188-92.
  • 32. Chow DD, Karara AH. Characterization, dissolution andbioavailability in rats of ibuprofen-β-cyclodextrin complexsystem. Int J Pharm 1986;28: 95-101.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Ali Serol Ertürk Bu kişi benim

Mustafa Ulvi Gürbüz

Metin Tülü Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 21 Sayı: 2

Kaynak Göster

APA Ertürk, A. S., Gürbüz, M. U., & Tülü, M. (2017). New-generation Jeffamine® D230 core amine, TRIS and carboxylterminated PAMAM dendrimers: Synthesis, characterization and the solubility application for a model NSAID drug Ibuprofen. Marmara Pharmaceutical Journal, 21(2), 385-399. https://doi.org/10.12991/marupj.300924
AMA Ertürk AS, Gürbüz MU, Tülü M. New-generation Jeffamine® D230 core amine, TRIS and carboxylterminated PAMAM dendrimers: Synthesis, characterization and the solubility application for a model NSAID drug Ibuprofen. mpj. Mayıs 2017;21(2):385-399. doi:10.12991/marupj.300924
Chicago Ertürk, Ali Serol, Mustafa Ulvi Gürbüz, ve Metin Tülü. “New-Generation Jeffamine® D230 Core Amine, TRIS and Carboxylterminated PAMAM Dendrimers: Synthesis, Characterization and the Solubility Application for a Model NSAID Drug Ibuprofen”. Marmara Pharmaceutical Journal 21, sy. 2 (Mayıs 2017): 385-99. https://doi.org/10.12991/marupj.300924.
EndNote Ertürk AS, Gürbüz MU, Tülü M (01 Mayıs 2017) New-generation Jeffamine® D230 core amine, TRIS and carboxylterminated PAMAM dendrimers: Synthesis, characterization and the solubility application for a model NSAID drug Ibuprofen. Marmara Pharmaceutical Journal 21 2 385–399.
IEEE A. S. Ertürk, M. U. Gürbüz, ve M. Tülü, “New-generation Jeffamine® D230 core amine, TRIS and carboxylterminated PAMAM dendrimers: Synthesis, characterization and the solubility application for a model NSAID drug Ibuprofen”, mpj, c. 21, sy. 2, ss. 385–399, 2017, doi: 10.12991/marupj.300924.
ISNAD Ertürk, Ali Serol vd. “New-Generation Jeffamine® D230 Core Amine, TRIS and Carboxylterminated PAMAM Dendrimers: Synthesis, Characterization and the Solubility Application for a Model NSAID Drug Ibuprofen”. Marmara Pharmaceutical Journal 21/2 (Mayıs 2017), 385-399. https://doi.org/10.12991/marupj.300924.
JAMA Ertürk AS, Gürbüz MU, Tülü M. New-generation Jeffamine® D230 core amine, TRIS and carboxylterminated PAMAM dendrimers: Synthesis, characterization and the solubility application for a model NSAID drug Ibuprofen. mpj. 2017;21:385–399.
MLA Ertürk, Ali Serol vd. “New-Generation Jeffamine® D230 Core Amine, TRIS and Carboxylterminated PAMAM Dendrimers: Synthesis, Characterization and the Solubility Application for a Model NSAID Drug Ibuprofen”. Marmara Pharmaceutical Journal, c. 21, sy. 2, 2017, ss. 385-99, doi:10.12991/marupj.300924.
Vancouver Ertürk AS, Gürbüz MU, Tülü M. New-generation Jeffamine® D230 core amine, TRIS and carboxylterminated PAMAM dendrimers: Synthesis, characterization and the solubility application for a model NSAID drug Ibuprofen. mpj. 2017;21(2):385-99.