Araştırma Makalesi
BibTex RIS Kaynak Göster

In vitro gene silencing effect of chitosan/shRNA PDGF-D nanoparticles in breast cancer

Yıl 2017, Cilt: 21 Sayı: 4, 793 - 803, 01.12.2017

Öz

Breast cancer is the most common cancer worldwide in women
and it is highly malignant and fatal. PDGF-D plays role in
regulation of many cellular processes such as angiogenesis.
PDGF-D is overexpressed in many types of cancers and promote
tumor growth and metastasis. Silencing of PDGF-D gene by
using shRNA with an appropriate carrier system may decrease
tumor growth and metastasis. In our study, we prepared chitosan
nanoparticles loaded with five different shRNA plasmids
targeting different exons of PDGF-D gene. Then, nanoparticles
were characterized in vitro and transfection efficiency of these
nanoparticles were investigated in breast cancer cell lines (MCF-
7, MDA-MB-231 and MDA-MB-435). The effects of single
and multiple shRNA sequences, molecular weight of chitosan
(150 kDa and 400 kDa) and the amount of shRNA (100 and
500 μg) on the characterization and transfection efficiencies of
nanoparticles have been studied. Size of nanoparticles changed
between 200-400 nm and approximately 95-100% encapsulation
efficiency were obtained. Release of shRNA changed with the
molecular weight of chitosan. It was obtained that formulation
containing shRNA plasmid targeting PDGF-D exon 6 (NP1)
has the highest silencing efficiency in MDA-MB-231 cell line. It
was also evaluated that chitosan can be a suitable gene delivery
system for shRNA targeting PDGF-D.

Kaynakça

  • 1. Rahman MA, Toi M. Anti-angiogenic therapy. Biomed Pharmacother 2003; 57: 463-70.
  • 2. Raica M, Cimpean AM. Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals 2010; 3: 572-99.
  • 3. Heldin C, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Phys Rev 1999; 79: 1283-316.
  • 4. Demoulin J, Essaqhir A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev 2014; 25: 273-83.
  • 5. Bergsten E, Uutela M, Li X. PDGF-D is a specific, proteaseactivated ligand for the PDGF beta-receptor. Nat Cell Biol 2001; 3: 512–6.
  • 6. LaRochelle WJ, Jeffers M, McDonald WF. PDGF-D, a new protease-activated growth factor. Nat Cell Biol 2001; 3: 517- 21.
  • 7. Li X, Eriksson U. Novel PDGF family members: PDGF-C and PDGF-D. Cytokine Growth Factor Rev 2003; 14: 91-8.
  • 8. Rosenkranz S, Kazlauskas A. Evidence for distinct biological properties and signaling machineries of the PDGF receptor a and b subtypes. Growth Factors 1999; 16: 201-16.
  • 9. Yu J, Ustach C, Kim HR. Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol 2003; 36: 49- 59.
  • 10. Wang Z, Kong D, Li Y, Sarkar FH. PDGF-D signaling: a novel target in cancer therapy. Curr Drug Targets 2009; 10: 38-41.
  • 11. Ustach CV, Taube ME, Hurst NJ Jr, Bhagat S, Bonfil RD, Cher ML, Schuger L, Kim HR. A potential oncogenic activity of platelet-derived growth factor d in prostate cancer progression. Cancer Res 2004; 64: 1722-9.
  • 12. Ustach CV, Choi KH-R. Platelet-derived growth factor d is activated by urokinase plasminogen activator in prostate carcinoma cells. Mol Cell Biol 2005; 25: 6279-88.
  • 13. Wang Z, Kong D, Banerjee S, Li Y, Adsay NV, Abbruzzese J, Sarkar FH. Down-regulation of platelet-derived growth factor-D inhibits cell growth and angiogenesis through inactivation of Notch-1 and nuclear factor-kappa B signaling. Cancer Res 2007; 67: 11377-85.
  • 14. Kong D, Wang Z, Sarkar SH, Li Y, Banerjee S, Saliganan A, Kim HR, Cher ML, Sarkar FH. Platelet-derived growth factor-d overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells 2008; 26: 1425-35.
  • 15. Wang Z, Ahmad A, Li Y, Kong D, Azmi AS, Banerjee S, Sarkar FH. Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochimica Biophysica Acta 2010; 1806: 122-30.
  • 16. Devarajan E, Song Y, Krishnappa S, Alt E. Epithelialmesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells. Int J Cancer 2012; 131: 1023-31. 17. Whelan J. First clinical data on RNAi. Drug Discov Today 2005; 10: 1014-5.
  • 18. Corey DR. Chemical modification: the key to clinical application of RNA interference? J Clin Invest 2007; 117: 3615-22.
  • 19. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 2005; 12: 461-6.
  • 20. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J.RNA intereference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 2006; 14: 476-84.
  • 21. Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J. Chitosan/siRNA nanoparticle–mediated TNF-alpha knockdown in peritoneal macrophages for antiinflammatory treatment in a murine arthritis model. Mol Ther 2009; 17: 162-8.
  • 22. Al-Dosari MS, Gao X. Non-viral gene delivery: principle, limitations, and recent progress. AAPS J 2009; 11: 671-81.
  • 23. Scales CW, Huang F, Li N, Vasilieva YA, Ray J, Convertine AJ, McCormick MC. Corona-stabilized interpolyelectrolyte complexes of siRNA with non-immunogenic, hydrophilic/ cationic block copolymers prepared by aqueous RAFT polymerization. Macromolecules 2006; 39: 6871-81.
  • 24. Filion MC, Phillips NC. Major limitations in the use of cationic liposomes for gene delivery. Int J Pharm 1998; 162: 159-70.
  • 25. Mao H-Q, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW.. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 2001; 70: 399-421.
  • 26. Akbuğa J, Aral C, Özbaş-Turan S, Kabasakal L, Keyer-Uysal M. Transfection efficiency of chitosan microspheres effect of DNA topology. STP Pharm Sci 2003; 13: 99–103.
  • 27. Ozbas-Turan S, Akbuğa J, Enneli B. Evaluation of antisense oligonucleotide loaded chitosan nanoparticles; characterization and antisense effect. Pharmazie 2009; 64: 807-11.
  • 28. Salva E, Akbuga J. Comparison of silencing effect of chitosan/ psiRNA complexes in different cell lines. Adv Chitin Sci 2009; 11: 203-8.
  • 29. Ozbaş-Turan S, Akbuğa J, Sezer AD. Topical application of antisense oligonucleotide-loaded chitosan nanoparticles to rats. Oligonucleotides 2010; 20: 147-53.
  • 30. Salva E, Akbuğa J. In vitro silencing effect of chitosan nanoplexes containing siRNA expressing vector targeting VEGF in breast cancer cell lines. Pharmazie 2010; 65: 896-903.
  • 31. Salva E, Kabasakal L, Eren F, Çakalağaoğlu F, Özkan N, Akbuğa J. Chitosan/short hairpain RNA complexes for vascular endothelial growth factor suppression invasive breast carcinoma. Oligonucleotides 2010; 20: 183-90.
  • 32. Xu L, Tong R, Cochran DM, Jain RK. Blocking platelet-derived growth factor-D/platelet-derived growth factor receptor beta signaling inhibits human renal cell carcinoma progression in an orthotropic mouse model. Cancer Res 2005; 65: 5711-9.
  • 33. Sambrook J, Fritsch EF, Maniatis T (eds). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: USA, 1989.
  • 34. Ando S, Putnam D, Pack DW, Langer R. PLGA microspheres containing plasmid DNA: Preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. J Pharm Sci 1999; 88: 126-30.
  • 35. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 1997; 63: 125-32.
  • 36. Zhang L, Yang L, Mohamed-Hadley A, Rubin S.C, Coukosa G. Vector-based RNAi, a novel tool for isoform-specific knockdown of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 2003; 303: 1169-78.
Yıl 2017, Cilt: 21 Sayı: 4, 793 - 803, 01.12.2017

Öz

Kaynakça

  • 1. Rahman MA, Toi M. Anti-angiogenic therapy. Biomed Pharmacother 2003; 57: 463-70.
  • 2. Raica M, Cimpean AM. Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals 2010; 3: 572-99.
  • 3. Heldin C, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Phys Rev 1999; 79: 1283-316.
  • 4. Demoulin J, Essaqhir A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev 2014; 25: 273-83.
  • 5. Bergsten E, Uutela M, Li X. PDGF-D is a specific, proteaseactivated ligand for the PDGF beta-receptor. Nat Cell Biol 2001; 3: 512–6.
  • 6. LaRochelle WJ, Jeffers M, McDonald WF. PDGF-D, a new protease-activated growth factor. Nat Cell Biol 2001; 3: 517- 21.
  • 7. Li X, Eriksson U. Novel PDGF family members: PDGF-C and PDGF-D. Cytokine Growth Factor Rev 2003; 14: 91-8.
  • 8. Rosenkranz S, Kazlauskas A. Evidence for distinct biological properties and signaling machineries of the PDGF receptor a and b subtypes. Growth Factors 1999; 16: 201-16.
  • 9. Yu J, Ustach C, Kim HR. Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol 2003; 36: 49- 59.
  • 10. Wang Z, Kong D, Li Y, Sarkar FH. PDGF-D signaling: a novel target in cancer therapy. Curr Drug Targets 2009; 10: 38-41.
  • 11. Ustach CV, Taube ME, Hurst NJ Jr, Bhagat S, Bonfil RD, Cher ML, Schuger L, Kim HR. A potential oncogenic activity of platelet-derived growth factor d in prostate cancer progression. Cancer Res 2004; 64: 1722-9.
  • 12. Ustach CV, Choi KH-R. Platelet-derived growth factor d is activated by urokinase plasminogen activator in prostate carcinoma cells. Mol Cell Biol 2005; 25: 6279-88.
  • 13. Wang Z, Kong D, Banerjee S, Li Y, Adsay NV, Abbruzzese J, Sarkar FH. Down-regulation of platelet-derived growth factor-D inhibits cell growth and angiogenesis through inactivation of Notch-1 and nuclear factor-kappa B signaling. Cancer Res 2007; 67: 11377-85.
  • 14. Kong D, Wang Z, Sarkar SH, Li Y, Banerjee S, Saliganan A, Kim HR, Cher ML, Sarkar FH. Platelet-derived growth factor-d overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells 2008; 26: 1425-35.
  • 15. Wang Z, Ahmad A, Li Y, Kong D, Azmi AS, Banerjee S, Sarkar FH. Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochimica Biophysica Acta 2010; 1806: 122-30.
  • 16. Devarajan E, Song Y, Krishnappa S, Alt E. Epithelialmesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells. Int J Cancer 2012; 131: 1023-31. 17. Whelan J. First clinical data on RNAi. Drug Discov Today 2005; 10: 1014-5.
  • 18. Corey DR. Chemical modification: the key to clinical application of RNA interference? J Clin Invest 2007; 117: 3615-22.
  • 19. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 2005; 12: 461-6.
  • 20. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J.RNA intereference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 2006; 14: 476-84.
  • 21. Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J. Chitosan/siRNA nanoparticle–mediated TNF-alpha knockdown in peritoneal macrophages for antiinflammatory treatment in a murine arthritis model. Mol Ther 2009; 17: 162-8.
  • 22. Al-Dosari MS, Gao X. Non-viral gene delivery: principle, limitations, and recent progress. AAPS J 2009; 11: 671-81.
  • 23. Scales CW, Huang F, Li N, Vasilieva YA, Ray J, Convertine AJ, McCormick MC. Corona-stabilized interpolyelectrolyte complexes of siRNA with non-immunogenic, hydrophilic/ cationic block copolymers prepared by aqueous RAFT polymerization. Macromolecules 2006; 39: 6871-81.
  • 24. Filion MC, Phillips NC. Major limitations in the use of cationic liposomes for gene delivery. Int J Pharm 1998; 162: 159-70.
  • 25. Mao H-Q, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW.. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 2001; 70: 399-421.
  • 26. Akbuğa J, Aral C, Özbaş-Turan S, Kabasakal L, Keyer-Uysal M. Transfection efficiency of chitosan microspheres effect of DNA topology. STP Pharm Sci 2003; 13: 99–103.
  • 27. Ozbas-Turan S, Akbuğa J, Enneli B. Evaluation of antisense oligonucleotide loaded chitosan nanoparticles; characterization and antisense effect. Pharmazie 2009; 64: 807-11.
  • 28. Salva E, Akbuga J. Comparison of silencing effect of chitosan/ psiRNA complexes in different cell lines. Adv Chitin Sci 2009; 11: 203-8.
  • 29. Ozbaş-Turan S, Akbuğa J, Sezer AD. Topical application of antisense oligonucleotide-loaded chitosan nanoparticles to rats. Oligonucleotides 2010; 20: 147-53.
  • 30. Salva E, Akbuğa J. In vitro silencing effect of chitosan nanoplexes containing siRNA expressing vector targeting VEGF in breast cancer cell lines. Pharmazie 2010; 65: 896-903.
  • 31. Salva E, Kabasakal L, Eren F, Çakalağaoğlu F, Özkan N, Akbuğa J. Chitosan/short hairpain RNA complexes for vascular endothelial growth factor suppression invasive breast carcinoma. Oligonucleotides 2010; 20: 183-90.
  • 32. Xu L, Tong R, Cochran DM, Jain RK. Blocking platelet-derived growth factor-D/platelet-derived growth factor receptor beta signaling inhibits human renal cell carcinoma progression in an orthotropic mouse model. Cancer Res 2005; 65: 5711-9.
  • 33. Sambrook J, Fritsch EF, Maniatis T (eds). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: USA, 1989.
  • 34. Ando S, Putnam D, Pack DW, Langer R. PLGA microspheres containing plasmid DNA: Preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. J Pharm Sci 1999; 88: 126-30.
  • 35. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 1997; 63: 125-32.
  • 36. Zhang L, Yang L, Mohamed-Hadley A, Rubin S.C, Coukosa G. Vector-based RNAi, a novel tool for isoform-specific knockdown of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 2003; 303: 1169-78.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Ceyda Ekentok Bu kişi benim

Suna Özbaş Turan Bu kişi benim

Jülide Akbuğa Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 21 Sayı: 4

Kaynak Göster

APA Ekentok, C., Özbaş Turan, S., & Akbuğa, J. (2017). In vitro gene silencing effect of chitosan/shRNA PDGF-D nanoparticles in breast cancer. Marmara Pharmaceutical Journal, 21(4), 793-803.
AMA Ekentok C, Özbaş Turan S, Akbuğa J. In vitro gene silencing effect of chitosan/shRNA PDGF-D nanoparticles in breast cancer. mpj. Aralık 2017;21(4):793-803.
Chicago Ekentok, Ceyda, Suna Özbaş Turan, ve Jülide Akbuğa. “In Vitro Gene Silencing Effect of chitosan/ShRNA PDGF-D Nanoparticles in Breast Cancer”. Marmara Pharmaceutical Journal 21, sy. 4 (Aralık 2017): 793-803.
EndNote Ekentok C, Özbaş Turan S, Akbuğa J (01 Aralık 2017) In vitro gene silencing effect of chitosan/shRNA PDGF-D nanoparticles in breast cancer. Marmara Pharmaceutical Journal 21 4 793–803.
IEEE C. Ekentok, S. Özbaş Turan, ve J. Akbuğa, “In vitro gene silencing effect of chitosan/shRNA PDGF-D nanoparticles in breast cancer”, mpj, c. 21, sy. 4, ss. 793–803, 2017.
ISNAD Ekentok, Ceyda vd. “In Vitro Gene Silencing Effect of chitosan/ShRNA PDGF-D Nanoparticles in Breast Cancer”. Marmara Pharmaceutical Journal 21/4 (Aralık 2017), 793-803.
JAMA Ekentok C, Özbaş Turan S, Akbuğa J. In vitro gene silencing effect of chitosan/shRNA PDGF-D nanoparticles in breast cancer. mpj. 2017;21:793–803.
MLA Ekentok, Ceyda vd. “In Vitro Gene Silencing Effect of chitosan/ShRNA PDGF-D Nanoparticles in Breast Cancer”. Marmara Pharmaceutical Journal, c. 21, sy. 4, 2017, ss. 793-0.
Vancouver Ekentok C, Özbaş Turan S, Akbuğa J. In vitro gene silencing effect of chitosan/shRNA PDGF-D nanoparticles in breast cancer. mpj. 2017;21(4):793-80.