Research Article
BibTex RIS Cite

The Antimicrobial Activity of Enteromorpha sp. Methanolic Extract and Gelatin Film Solution Against on Some Pathogens

Year 2019, Volume: 8 Issue: 2, 58 - 63, 31.12.2019
https://doi.org/10.33714/masteb.640614

Abstract

Pathogenic microorganisms have been the primary cause of
foodborne disease and food poisoning throughout the world for years. The use of
natural antimicrobial agents in food coating has been effective in regulating
the adverse effects of pathogens in food. Increasing antimicrobial efficacy in
these coatings is one of the current issues of the food industry. In the
present study, the antimicrobial properties of
Enteromorpha sp., which is a marine algae, and gelatin film
solution incorporated with
Enteromorpha
sp.
methanol extract have been investigated. The contents of Enteromorpha sp. methanol extract were
determined by Gas chromatography–mass spectrometry (GCMS). The most important
components in the extract were methyl palmitoleate, neophytadiene, phytol,
methyl linolenate and methyl stearate. The minimum inhibitory concentration (MIC;
the lowest concentration of test material which results in 99.9% inhibition of
growth) of
Enteromorpha sp. on Escherichia coli, Staphylococcus aureus and Candida
albicans
were found to be between 10.79 mg/mL and 26.86 mg/mL by
spectrophotometric microdilution technique. The antimicrobial effect of
gelatin-
Enteromorpha sp. methanolic
extract film solution against the same pathogens was determined by disc
diffusion method. The inhibition zone of gelatin-
Enteromorpha sp. film solution was reported between 0.1 and 5.1 mm
against pathogens. After a 24-h incubation, the effectiveness of the film
solution was lower (1.3 mm) when compared to the extract on
E. coli (5.1 mm). As a result, this
study clearly showed that
Enteromorpha
sp.
could be used as antimicrobial food coating agent, especially, in E. coli struggle.

Supporting Institution

Research Fund of Mersin University

Project Number

2018-2-AP3-2939

References

  • Alghazeer, R., Whida, F., Abduelrhman, E., Gammoudi, F. & Azwai, S. (2013). Screening of antibacterial activity in marine green, red and brown macroalgae from the western coast of Libya. Natural Science, 5(1): 7-14.
  • Bassolé, I.H.N. & Juliani, H.R. (2012). Essential oils in combination and their antimicrobial properties. Molecules, 17(4): 3989-4006.
  • Callow, J.A. (2002). Microtopographic cues for settlement of zoospores of the green fouling alga Enteromorpha. The Journal of Bioadhesion and Biofilm Research, 18(3): 237-245.
  • Cha, D. S. & Chinnan, M.S. (2004). Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition, 44(4): 223-237.
  • Dalynn Biologicals. (2014). McFarland Standard, Cat no: TM50-TM60.
  • Desbois, A.P. & Smith, V.J. (2015). Disk diffusion assay to assess the antimicrobial activity of marine algal extracts in Natural Product from Marine Algae, Springer Protocols, pp. 403-410.
  • Ganesan, K., Kumar, K.S. & Rao, P.V.S. (2011). Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innovative Food Science and Emerging Technologies, 12(1): 73-78.
  • Herrero, M., Ibáñez, E., Cifuentes, A., Reglero, G. & Santoyo, S. (2006). Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. Journal of Food Protection, 69(10): 2471-2477.
  • Ibrahim, D. & Lim, S.-H. (2015). In vitro antimicrobial activities of methanolic extract from marine alga Enteromorpha intestinalis. Asian Pacific of Tropical Biomedicine, 5(9): 785-788.
  • Kausalya, M. & Rao, G.M.N. (2015). Antimicrobial activity of marine algae. Journal of Algal Biomass Utilization, 6(1): 78-87.
  • Kim, J., Marshall, M.R. & Wei, C. (1995). Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry, 43(11): 2839-2845.
  • Kuppulakshmi, C., Prakash, M., Gunasekaran, G., Manimegalai, G. & Sarojini, S. (2008). Antibacterial properties of fish mucus from Channa punctatus and Cirrhinus mrigala. European Review for Medical and Pharmacological Sciences, 12(1): 149-153.
  • Lima-Filho, J.V.M., Carvalho, A.F.F.U., Freitas, S.M. & Melo, V.M.M. (2002). Antibacterial activity of extracts of six macroalgae from the Northeastern Brazilian coast. Brazilian Journal of Microbiology, 33(4): 311-313.
  • Murata, M. & Nakazoe, J. I. (2001). Production and use of marine algae in Japan. Japan Agricultural Research Quarterly, 35(4): 281-290.
  • Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R. & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12): 1451-1474.
  • Newman, D.J., Cragg, G.M. & Snader, K.M. (2003). Natural products as sources of new drugs over the period 1981-2002. Journal of Natural Products, 66(7): 1022-1037.
  • Nykänen, A., Weckman, K. & Lapveteläinen, A. (2000). Synergistic inhibition of Listeria monocytogenes on cold-smoked rainbow trout by nisin and sodium lactate. International Journal of Food Microbiology, 61(1): 63-72.
  • Oliveira, O.P., Sales, D.L., Dias, D.Q., Cabral, M.E.S., Araújo Filho, J.A., Teles, D.A., Sausa, G.G., Ribeiro, S.C., Freitas, F.R.D., Coutinho, H.D.M., Kerntopf, M.R., da Costa, J.G.M., Alves, R.R.N. & Almeida, W.O. (2014). Antimicrobial activity and chemical composition of fixed oil extracted from the body fat of the snake Spilotes pullatus. Pharmaceutical Biology, 52(6): 740-744.
  • Ouattar, B., Simard, R.E., Piett, G., Bégin, A. & Holley, R.A. (2000). Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology, 62(1-2): 139-148.
  • Patra, J.K., Das, G. & Baek, K.H. (2015). Antibacterial mechanism of the action of Enteromorpha linza l. essential oil against Escherichia coli and Salmonella typhimurium. Botanical Studies, 56(13): 1-9.
  • Patton, T., Barrett, J., Brennan, J. & Moran, N. (2006). Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. Journal of Microbiological Methods, 64(1): 84-95.
  • Pavia, H. & Åberg, P. (1996). Spatial variation in polyphenolic content of Ascophyllum nodosum (Fucales, Phaeophyta). Hydrobiologia. 1: 199-203.
  • Pejin, B., Savic, A., Sokovic, M., Glamoclija, J., Ciric, A., Nikolic, M., Radotic, K. & Mojovic, M. (2014). Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Natural Product Research, 28(6): 372-376.
  • Quintavalla, S. & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62(3): 373-380.
  • Sanchez-Garcia, M.D., Lopez-Rubio, A. & Lagaron, J.M. (2010). Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science and Technology, 21(11): 528-536.
  • Senthilkumar, P., Durga Devi, V., Minhajdeen, A., Saranya, R.S., Sree Jaya, S. & Sudha, S. (2014). Antibacterial Properties of Enteromorpha flexuosa (Wulfen) from the Gulf of MannarSoutheast Coast of India. American Journal of Ethnomedicine, 1(1): 050-055
  • Sfeir, J., Lefrançois, C., Baudoux, D., Derbré, S. & Licznar, P. (2013). In vitro antibacterial activity of essential oils against streptococcus pyogenes. Evidence-based Complementary and Alternative Medicine, 9: 269161.
  • Sıcak, Y. & Erdoğan Eliuz, E.A. (2019a). Determination of the phytochemical profile, in vitro the antioxidant and antimicrobial activities of essential oil from Arbutus andrachne L. wood growing in Turkey. Turkish Journal of Foresty, 20(1): 57-61.
  • Sıcak, Y. & Erdoğan Eliuz, E.A. (2019b). Chemical content and biological activity spectrum of Nigella sativa Seed Oil. KSU Journal of Agriculture and Nature, 22(6): 928-934.
  • Silva-Weiss, A., Ihl, M., Sobral, P.J.A., Gómez-Guillén, M. C. & Bifani, V. (2013). Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. Food Engineering Reviews, 5(4): 200-216.
  • Srey, S., Jahid, I.K. & Ha, S.D. (2013). Biofilm formation in food industries: A food safety concern. Food Control, 31: 572-585.
  • Tan, I.H., Blomster, J., Hansen, G., Leskinen, E., Maggs, C.A., Mann, D.G., Sluiman, H.J. & Stanhope, M.J. (1999). Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, Ulva and Enteromorpha. Molecular Biology and Evolution, 16(8): 1011-1018.
  • Tosun, H. & Gönül, Ş.A. (2003). E. coli O157: H7’nin Aside Tolerans Kazanması ve Asidik Gıdalarda Önemi. Orlab On-Line Mikrobiyoloji Dergisi. 1(10): 10-17.
  • Trombetta, D., Castelli, F., Sarpietro, M.G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G. & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy, 49(6): 2474-2478.
  • Val, A.G., Platas, G., Basilio, A., Cabello, A., Gorrochategui, J., Suay, I., Vicente, F., Portillo, E., Río, M.J., Reina, G.G. & Peláez, F. (2001). Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). International Microbiology, 4(1): 35-40.
  • Yabalak, E. (2018). Radical scavenging activity and chemical composition of methanolic extract from Arum dioscoridis SM. var. dioscoridis and determination of its mineral and trace elements. Journal of Turkish Chemical Society Section A: Chemistry, 5(1): 205-218.
  • Yan, X., Nagata, T. & Fan, X. (1998). Antioxidative activities in some common seaweeds. Plant Foods for Human Nutrition, 52(3): 253-263.
Year 2019, Volume: 8 Issue: 2, 58 - 63, 31.12.2019
https://doi.org/10.33714/masteb.640614

Abstract

Project Number

2018-2-AP3-2939

References

  • Alghazeer, R., Whida, F., Abduelrhman, E., Gammoudi, F. & Azwai, S. (2013). Screening of antibacterial activity in marine green, red and brown macroalgae from the western coast of Libya. Natural Science, 5(1): 7-14.
  • Bassolé, I.H.N. & Juliani, H.R. (2012). Essential oils in combination and their antimicrobial properties. Molecules, 17(4): 3989-4006.
  • Callow, J.A. (2002). Microtopographic cues for settlement of zoospores of the green fouling alga Enteromorpha. The Journal of Bioadhesion and Biofilm Research, 18(3): 237-245.
  • Cha, D. S. & Chinnan, M.S. (2004). Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition, 44(4): 223-237.
  • Dalynn Biologicals. (2014). McFarland Standard, Cat no: TM50-TM60.
  • Desbois, A.P. & Smith, V.J. (2015). Disk diffusion assay to assess the antimicrobial activity of marine algal extracts in Natural Product from Marine Algae, Springer Protocols, pp. 403-410.
  • Ganesan, K., Kumar, K.S. & Rao, P.V.S. (2011). Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innovative Food Science and Emerging Technologies, 12(1): 73-78.
  • Herrero, M., Ibáñez, E., Cifuentes, A., Reglero, G. & Santoyo, S. (2006). Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. Journal of Food Protection, 69(10): 2471-2477.
  • Ibrahim, D. & Lim, S.-H. (2015). In vitro antimicrobial activities of methanolic extract from marine alga Enteromorpha intestinalis. Asian Pacific of Tropical Biomedicine, 5(9): 785-788.
  • Kausalya, M. & Rao, G.M.N. (2015). Antimicrobial activity of marine algae. Journal of Algal Biomass Utilization, 6(1): 78-87.
  • Kim, J., Marshall, M.R. & Wei, C. (1995). Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry, 43(11): 2839-2845.
  • Kuppulakshmi, C., Prakash, M., Gunasekaran, G., Manimegalai, G. & Sarojini, S. (2008). Antibacterial properties of fish mucus from Channa punctatus and Cirrhinus mrigala. European Review for Medical and Pharmacological Sciences, 12(1): 149-153.
  • Lima-Filho, J.V.M., Carvalho, A.F.F.U., Freitas, S.M. & Melo, V.M.M. (2002). Antibacterial activity of extracts of six macroalgae from the Northeastern Brazilian coast. Brazilian Journal of Microbiology, 33(4): 311-313.
  • Murata, M. & Nakazoe, J. I. (2001). Production and use of marine algae in Japan. Japan Agricultural Research Quarterly, 35(4): 281-290.
  • Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R. & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12): 1451-1474.
  • Newman, D.J., Cragg, G.M. & Snader, K.M. (2003). Natural products as sources of new drugs over the period 1981-2002. Journal of Natural Products, 66(7): 1022-1037.
  • Nykänen, A., Weckman, K. & Lapveteläinen, A. (2000). Synergistic inhibition of Listeria monocytogenes on cold-smoked rainbow trout by nisin and sodium lactate. International Journal of Food Microbiology, 61(1): 63-72.
  • Oliveira, O.P., Sales, D.L., Dias, D.Q., Cabral, M.E.S., Araújo Filho, J.A., Teles, D.A., Sausa, G.G., Ribeiro, S.C., Freitas, F.R.D., Coutinho, H.D.M., Kerntopf, M.R., da Costa, J.G.M., Alves, R.R.N. & Almeida, W.O. (2014). Antimicrobial activity and chemical composition of fixed oil extracted from the body fat of the snake Spilotes pullatus. Pharmaceutical Biology, 52(6): 740-744.
  • Ouattar, B., Simard, R.E., Piett, G., Bégin, A. & Holley, R.A. (2000). Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology, 62(1-2): 139-148.
  • Patra, J.K., Das, G. & Baek, K.H. (2015). Antibacterial mechanism of the action of Enteromorpha linza l. essential oil against Escherichia coli and Salmonella typhimurium. Botanical Studies, 56(13): 1-9.
  • Patton, T., Barrett, J., Brennan, J. & Moran, N. (2006). Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. Journal of Microbiological Methods, 64(1): 84-95.
  • Pavia, H. & Åberg, P. (1996). Spatial variation in polyphenolic content of Ascophyllum nodosum (Fucales, Phaeophyta). Hydrobiologia. 1: 199-203.
  • Pejin, B., Savic, A., Sokovic, M., Glamoclija, J., Ciric, A., Nikolic, M., Radotic, K. & Mojovic, M. (2014). Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Natural Product Research, 28(6): 372-376.
  • Quintavalla, S. & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62(3): 373-380.
  • Sanchez-Garcia, M.D., Lopez-Rubio, A. & Lagaron, J.M. (2010). Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science and Technology, 21(11): 528-536.
  • Senthilkumar, P., Durga Devi, V., Minhajdeen, A., Saranya, R.S., Sree Jaya, S. & Sudha, S. (2014). Antibacterial Properties of Enteromorpha flexuosa (Wulfen) from the Gulf of MannarSoutheast Coast of India. American Journal of Ethnomedicine, 1(1): 050-055
  • Sfeir, J., Lefrançois, C., Baudoux, D., Derbré, S. & Licznar, P. (2013). In vitro antibacterial activity of essential oils against streptococcus pyogenes. Evidence-based Complementary and Alternative Medicine, 9: 269161.
  • Sıcak, Y. & Erdoğan Eliuz, E.A. (2019a). Determination of the phytochemical profile, in vitro the antioxidant and antimicrobial activities of essential oil from Arbutus andrachne L. wood growing in Turkey. Turkish Journal of Foresty, 20(1): 57-61.
  • Sıcak, Y. & Erdoğan Eliuz, E.A. (2019b). Chemical content and biological activity spectrum of Nigella sativa Seed Oil. KSU Journal of Agriculture and Nature, 22(6): 928-934.
  • Silva-Weiss, A., Ihl, M., Sobral, P.J.A., Gómez-Guillén, M. C. & Bifani, V. (2013). Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. Food Engineering Reviews, 5(4): 200-216.
  • Srey, S., Jahid, I.K. & Ha, S.D. (2013). Biofilm formation in food industries: A food safety concern. Food Control, 31: 572-585.
  • Tan, I.H., Blomster, J., Hansen, G., Leskinen, E., Maggs, C.A., Mann, D.G., Sluiman, H.J. & Stanhope, M.J. (1999). Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, Ulva and Enteromorpha. Molecular Biology and Evolution, 16(8): 1011-1018.
  • Tosun, H. & Gönül, Ş.A. (2003). E. coli O157: H7’nin Aside Tolerans Kazanması ve Asidik Gıdalarda Önemi. Orlab On-Line Mikrobiyoloji Dergisi. 1(10): 10-17.
  • Trombetta, D., Castelli, F., Sarpietro, M.G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G. & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy, 49(6): 2474-2478.
  • Val, A.G., Platas, G., Basilio, A., Cabello, A., Gorrochategui, J., Suay, I., Vicente, F., Portillo, E., Río, M.J., Reina, G.G. & Peláez, F. (2001). Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). International Microbiology, 4(1): 35-40.
  • Yabalak, E. (2018). Radical scavenging activity and chemical composition of methanolic extract from Arum dioscoridis SM. var. dioscoridis and determination of its mineral and trace elements. Journal of Turkish Chemical Society Section A: Chemistry, 5(1): 205-218.
  • Yan, X., Nagata, T. & Fan, X. (1998). Antioxidative activities in some common seaweeds. Plant Foods for Human Nutrition, 52(3): 253-263.
There are 37 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Article
Authors

Elif Eliuz 0000-0003-4317-3000

Nahit Soner Börekçi This is me 0000-0003-1124-1013

Deniz Ayas 0000-0001-6762-6284

Project Number 2018-2-AP3-2939
Publication Date December 31, 2019
Submission Date October 31, 2019
Acceptance Date November 22, 2019
Published in Issue Year 2019 Volume: 8 Issue: 2

Cite

APA Eliuz, E., Börekçi, N. S., & Ayas, D. (2019). The Antimicrobial Activity of Enteromorpha sp. Methanolic Extract and Gelatin Film Solution Against on Some Pathogens. Marine Science and Technology Bulletin, 8(2), 58-63. https://doi.org/10.33714/masteb.640614
AMA Eliuz E, Börekçi NS, Ayas D. The Antimicrobial Activity of Enteromorpha sp. Methanolic Extract and Gelatin Film Solution Against on Some Pathogens. Mar. Sci. Tech. Bull. December 2019;8(2):58-63. doi:10.33714/masteb.640614
Chicago Eliuz, Elif, Nahit Soner Börekçi, and Deniz Ayas. “The Antimicrobial Activity of Enteromorpha Sp. Methanolic Extract and Gelatin Film Solution Against on Some Pathogens”. Marine Science and Technology Bulletin 8, no. 2 (December 2019): 58-63. https://doi.org/10.33714/masteb.640614.
EndNote Eliuz E, Börekçi NS, Ayas D (December 1, 2019) The Antimicrobial Activity of Enteromorpha sp. Methanolic Extract and Gelatin Film Solution Against on Some Pathogens. Marine Science and Technology Bulletin 8 2 58–63.
IEEE E. Eliuz, N. S. Börekçi, and D. Ayas, “The Antimicrobial Activity of Enteromorpha sp. Methanolic Extract and Gelatin Film Solution Against on Some Pathogens”, Mar. Sci. Tech. Bull., vol. 8, no. 2, pp. 58–63, 2019, doi: 10.33714/masteb.640614.
ISNAD Eliuz, Elif et al. “The Antimicrobial Activity of Enteromorpha Sp. Methanolic Extract and Gelatin Film Solution Against on Some Pathogens”. Marine Science and Technology Bulletin 8/2 (December 2019), 58-63. https://doi.org/10.33714/masteb.640614.
JAMA Eliuz E, Börekçi NS, Ayas D. The Antimicrobial Activity of Enteromorpha sp. Methanolic Extract and Gelatin Film Solution Against on Some Pathogens. Mar. Sci. Tech. Bull. 2019;8:58–63.
MLA Eliuz, Elif et al. “The Antimicrobial Activity of Enteromorpha Sp. Methanolic Extract and Gelatin Film Solution Against on Some Pathogens”. Marine Science and Technology Bulletin, vol. 8, no. 2, 2019, pp. 58-63, doi:10.33714/masteb.640614.
Vancouver Eliuz E, Börekçi NS, Ayas D. The Antimicrobial Activity of Enteromorpha sp. Methanolic Extract and Gelatin Film Solution Against on Some Pathogens. Mar. Sci. Tech. Bull. 2019;8(2):58-63.

27116