Research Article
BibTex RIS Cite

Carotenoid Composition and Investigation of the Antioxidant Activity of Phormidium sp.

Year 2022, Volume: 11 Issue: 2, 212 - 220, 24.06.2022
https://doi.org/10.33714/masteb.1106896

Abstract

Microalgae metabolites are used for health, feed additives, cosmetic industries, food and biodiesel production. Phormidium species have an important position in medical studies because they contain essential components. In this study, carotenoid profile and content were analyzed using the HPLC method. Antioxidant activities for Phormidium sp. were determined using DPPH and FRAP assays. BHT and ASC were used as control samples in antioxidant assays. The method used to resolve a number of carotenoids from saponified Phormidium sp. proved acceptable separation, as evidenced by retention factor (k) values of 0.54 to 3.83 and separation factor (α) values greater than 1. Main carotenoids were dominated by the two main derivatives, all-trans form of lutein 41.35% (1.25 mg/g) and 9-or 9’-cis-β-carotene 36.43% (1.10 mg/g). Auroxanthin and cis neoxanthin were identified as epoxy-containing compounds. It is also understood that considering the DPPH assay, the extract of Phormidium sp. (IC50:127.6 mg/L) exhibited clearly low radical scavenging activity compared to the standards ASC (IC50: 0.02 mg/L) and BHT (IC50: 0.19 mg/L). In the FRAP antioxidant experiment, the mean ASC and BHT equivalent amounts were determined as 828.6 and 124.6 mg/L, respectively. Quantitatively, Phormidium sp. was predominated by cis-Lutein as a major constituent, being 41.35% (3.02 mg/g) in total carotenoids (Tc). The antioxidant capacity of Phormidium sp. that considering the DPPH and FRAP were compared to control standards were showed considerably low effects.

Thanks

I would like to thank Kırıkkale University Scientific and Technological Research Application and Research Center for their support.

References

  • Aluç, Y., Başaran Kankılıç, G., & Tüzün, İ. (2018). Determination of carotenoids in two algae species from the saline water of Kapulukaya reservoir by HPLC. Journal of Liquid Chromatography & Related Technologies, 41(2), 93-100. https://doi.org/10.1080/10826076.2017.1418376
  • Babu, B., & Wu, J. T. (2008). Production of natural butylated hydroxytoluene as an antioxidant by freshwater phytoplankton. Journal of Phycology, 44(6), 1447-1454. https://doi.org/10.1111/j.1529-8817.2008.00596.x
  • Batista, A. P., Gouveia, L., Bandarra, N. M., Franco, J. M., & Raymundo, A. (2013). Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2(2), 164-173. https://doi.org/10.1016/j.algal.2013.01.004
  • Benedetti, S., Benvenuti, F., Scoglio, S., & Canestrari, F. (2010). Oxygen radical absorbance capacity of phycocyanin and phycocyanobilin from the food supplement Aphanizomenon flos-aquae. Journal of Medicinal Food, 13(1), 223-227. https://doi.org/10.1089/jmf.2008.0257
  • Bischoff, H. W., & Bold, H. C. (1963). Some soil algae from Enchanted Rock and related algal species. Phycological Studies IV. University of Texas Publication.
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
  • Canini, A., Albertano, P., Leonardi, D., Di Somma, D., & Grilli Caiola, M. (1996). Superoxide dismutase in cyanobacteria of the Baltic Sea. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 83, 129-143. https://doi.org/10.1127/algol_stud/83/1996/129
  • Chacon-Lee, T. L., & Gonzalez-Marino, G. E. (2010). Microalgae for “healthy” foods-possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655-675. https://doi.org/10.1111/j.1541-4337.2010.00132.x
  • Chatterjee, D., & Bhattacharjee, P. (2014). Supercritical carbon dioxide extraction of antioxidant rich fraction from Phormidium valderianum: Optimization of experimental process parameters. Algal Research, 3, 49-54. https://doi.org/10.1016/j.algal.2013.11.014
  • Chen, B. H., Yang, S. H., & Han, L. H. (1991). Characterization of major carotenoids in water convolvulus (Ipomoea aquatica) by open-column, thin-layer and high-performance liquid chromatography. Journal of Chromatography A, 543, 147-155. https://doi.org/10.1016/S0021-9673(01)95763-2
  • Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., & Cooman, L. D. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24(6), 1477–1486. https://doi.org/10.1007/s10811-012-9804-6
  • Gong, M., & Bassi, A. (2016). Carotenoids from microalgae: A review of recent developments. Biotechnology Advances, 34(8), 1396-1412. https://doi.org/10.1016/j.biotechadv.2016.10.005
  • González-López, C., Camacho-Rodríguez, J., López-Rosales, L., García-Camacho, F., & Molina-Grima], E. (2018). Maximizing carotenoid extraction from microalgae used as food additives and determined by liquid chromatography (HPLC). Food Chemistry, 15, 257, 316-324. https://doi.org/10.1016/j.foodchem.2018.02.154
  • Hancock, J. T., R. Desikan, and S. J. Neill. (2001). Role of reactive oxygen species in cell signalling pathways. Biochemical Society Transactions, 29(2), 345-349. https://doi.org/10.1042/0300-5127:0290345
  • Ho, S. H., Chan, M. C., Liu, C. C., Chen, C. Y., & Chang, J. S. (2014). Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 152(1), 275-282. https://doi.org/10.1016/j.biortech.2013.11.031
  • Inbaraj, B. S., Chien, J. T., & Chen, B. H. (2006). Improved high performance liquid chromatographic method for determination of carotenoids in the microalga Chlorella pyrenoidosa. Journal of Chromatography A, 1102(1-2), 193-199. https://doi.org/10.1016/j.chroma.2005.10.055
  • Khansari, N., Shakiba, Y., & Mahmoudi, M. (2009). Chronic inflammation and oxidative stress as a major cause of age- related diseases and cancer. Recent Patents on Inflammation & Allergy Drug Discovery, 3(1), 73–80. https://doi.org/10.2174/187221309787158371
  • Khotimchenko, S. V., & Yakovleva, I. M. (2004). Effect of solar irradiance on lipids of the green alga Ulva fenestrata Postels et Ruprecht. Botanica Marina, 47(5), 395-401. https://doi.org/10.1515/bot.2004.050
  • Leclercq, C., Arcella, D., & Turrini, A. (2000). Estimates of the theoretical maximum daily intake of erythorbic acid, gallates, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in Italy: A stepwise approach. Food and Chemical Toxicology, 38(12), 1075-1084. https://doi.org/10.1016/s0278-6915(00)00106-x
  • Liu, H. L., Kao, T. H., & Chen, B. H. (2004). Determination of Carotenoids in the Chinese medical herb jiao-gu-lan (Gynostemma pentaphyllum MAKINO) by liquid chromatography. Chromatographia, 60(7/8), 411-417. https://doi.org/10.1365/s10337-004-0418-2
  • Maesaroh, K., Kurnia, D., & Anshori, J. A. (2018). Perbandingan metode uji aktivitas antioksidan DPPH, FRAP dan FIC terhadap asam askorbat, asam galat dan kuersetin. Chimica et Natura Acta, 6(2), 93-100. https://doi.org/https://doi.org/10.24198/cna.v6.n2.19049
  • Morone, J., Lopes, G., Preto, M., Vasconcelos, V., & Martins, R. (2020). Exploitation of filamentous and picoplanktonic cyanobacteria for cosmetic applications: Potential to improve skin structure and preserve dermal matrix components. Marine Drugs, 18(9), 486. https://doi.org/10.3390/md18090486
  • Niyogi, K. K., Björkman, O., & Grossman, A. R. (1997). The roles of specific xanthophylls in photoprotection. Proceedings of the National Academy of Sciences, 94(25), 14162-14167. https://doi.org/10.1073/pnas.94.25.14162
  • Oyaizu, M. (1986). Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  • Patrick, L. (2001). Beta carotene: The controversy continues. Alternative Medicine Review: A Journal of Clinical Therapeutic, 5(6), 530-545.
  • Putri, M. D., Arumasi, A., Kurniaty, N. (2020). Review artikel: Uji aktivitas antioksidan ekstrak daging buah semangka dan albedo semangka (Citrullus lanatus) dengan metode DPPH dan FRAP. Prosiding Farmasi, 6(2), 992-997. https://doi.org/10.29313/.v6i2.24206
  • Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55(3), 207–216. https://doi.org/10.1016/j.phrs.2007.01.012
  • Richmond, A., & Hu, Q. (Eds.) (2013). Handbook of microalgal culture: Biotechnology and applied phycology. Wiley-Blackwell Publishing.
  • Rodrigues, D. B., Menezes, C. R., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2015). Bioactive pigments from microalgae Phormidium autumnale. Food Research International, 77, 273-279. https://doi.org/10.1016/j.foodres.2015.04.027
  • Rodríguez-Meizoso, I., Jaime, L., Santoyo, S., Cifuentes, A., Reina, G. B., Señoráns, F., & Ibáñez, E. (2008). Pressurized fluid extraction of bioactive compounds from Phormidium species. Journal of Agricultural and Food Chemistry, 56(10), 3517-3523. https://doi.org/10.1021/jf703719p
  • Shanab, S. M. M., Mostafa, S. S. M., Shalaby, E. A., & Mahmoud, G. I. (2012). Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pacific Journal of Tropical Biomedicine, 2(8), 608-615. https://doi.org/10.1016/s2221-1691(12)60106-3
  • Soni, B., Trivedi, U. B., & Madamwar, D. (2008). A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresource Technology, 99(1), 188-194. https://doi.org/10.1016/j.biortech.2006.11.010
  • Sri Mariani, N. R. d. S. (2018). Antioxidant activity test of watermelon (Citrullus lanatus) fruit extracts. Jurnal Akademika Kimia, 7(2), 96-101.
  • Stange, C. (Ed.) (2016). Carotenoids in Nature: Biosynthesis, Regulation and Function. Springer.
  • Tahir, M., Heluth, A. C., & Widiastuti, H. (2018). Uji aktivitas antioksidan ekstrak buah semangka (Citrullus lanatus) dengan metode FRAP. As-Syifaa Jurnal Farmasi, 8(1), 31-38. https://doi.org/10.33096/jifa.v8i1.155
  • Wojtasiewicz, B., & Ston-Egiert, J. (2016). Bio-optical characterization of selected cyanobacteria strains present in marine and freshwater ecosystems. Journal of Applied Phycology, 28, 2299-2314. https://doi.org/10.1007/s10811-015-0774-3
  • Zuluaga, M., Gueguen, V., Pavon-Djavid, G., & Letourneur, D. (2017). Carotenoids from microalgae to block oxidative stress. Bioimpacts, 7(1), 1–3. https://doi.org/10.15171%2Fbi.2017.01
Year 2022, Volume: 11 Issue: 2, 212 - 220, 24.06.2022
https://doi.org/10.33714/masteb.1106896

Abstract

References

  • Aluç, Y., Başaran Kankılıç, G., & Tüzün, İ. (2018). Determination of carotenoids in two algae species from the saline water of Kapulukaya reservoir by HPLC. Journal of Liquid Chromatography & Related Technologies, 41(2), 93-100. https://doi.org/10.1080/10826076.2017.1418376
  • Babu, B., & Wu, J. T. (2008). Production of natural butylated hydroxytoluene as an antioxidant by freshwater phytoplankton. Journal of Phycology, 44(6), 1447-1454. https://doi.org/10.1111/j.1529-8817.2008.00596.x
  • Batista, A. P., Gouveia, L., Bandarra, N. M., Franco, J. M., & Raymundo, A. (2013). Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2(2), 164-173. https://doi.org/10.1016/j.algal.2013.01.004
  • Benedetti, S., Benvenuti, F., Scoglio, S., & Canestrari, F. (2010). Oxygen radical absorbance capacity of phycocyanin and phycocyanobilin from the food supplement Aphanizomenon flos-aquae. Journal of Medicinal Food, 13(1), 223-227. https://doi.org/10.1089/jmf.2008.0257
  • Bischoff, H. W., & Bold, H. C. (1963). Some soil algae from Enchanted Rock and related algal species. Phycological Studies IV. University of Texas Publication.
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
  • Canini, A., Albertano, P., Leonardi, D., Di Somma, D., & Grilli Caiola, M. (1996). Superoxide dismutase in cyanobacteria of the Baltic Sea. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 83, 129-143. https://doi.org/10.1127/algol_stud/83/1996/129
  • Chacon-Lee, T. L., & Gonzalez-Marino, G. E. (2010). Microalgae for “healthy” foods-possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655-675. https://doi.org/10.1111/j.1541-4337.2010.00132.x
  • Chatterjee, D., & Bhattacharjee, P. (2014). Supercritical carbon dioxide extraction of antioxidant rich fraction from Phormidium valderianum: Optimization of experimental process parameters. Algal Research, 3, 49-54. https://doi.org/10.1016/j.algal.2013.11.014
  • Chen, B. H., Yang, S. H., & Han, L. H. (1991). Characterization of major carotenoids in water convolvulus (Ipomoea aquatica) by open-column, thin-layer and high-performance liquid chromatography. Journal of Chromatography A, 543, 147-155. https://doi.org/10.1016/S0021-9673(01)95763-2
  • Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., & Cooman, L. D. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24(6), 1477–1486. https://doi.org/10.1007/s10811-012-9804-6
  • Gong, M., & Bassi, A. (2016). Carotenoids from microalgae: A review of recent developments. Biotechnology Advances, 34(8), 1396-1412. https://doi.org/10.1016/j.biotechadv.2016.10.005
  • González-López, C., Camacho-Rodríguez, J., López-Rosales, L., García-Camacho, F., & Molina-Grima], E. (2018). Maximizing carotenoid extraction from microalgae used as food additives and determined by liquid chromatography (HPLC). Food Chemistry, 15, 257, 316-324. https://doi.org/10.1016/j.foodchem.2018.02.154
  • Hancock, J. T., R. Desikan, and S. J. Neill. (2001). Role of reactive oxygen species in cell signalling pathways. Biochemical Society Transactions, 29(2), 345-349. https://doi.org/10.1042/0300-5127:0290345
  • Ho, S. H., Chan, M. C., Liu, C. C., Chen, C. Y., & Chang, J. S. (2014). Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 152(1), 275-282. https://doi.org/10.1016/j.biortech.2013.11.031
  • Inbaraj, B. S., Chien, J. T., & Chen, B. H. (2006). Improved high performance liquid chromatographic method for determination of carotenoids in the microalga Chlorella pyrenoidosa. Journal of Chromatography A, 1102(1-2), 193-199. https://doi.org/10.1016/j.chroma.2005.10.055
  • Khansari, N., Shakiba, Y., & Mahmoudi, M. (2009). Chronic inflammation and oxidative stress as a major cause of age- related diseases and cancer. Recent Patents on Inflammation & Allergy Drug Discovery, 3(1), 73–80. https://doi.org/10.2174/187221309787158371
  • Khotimchenko, S. V., & Yakovleva, I. M. (2004). Effect of solar irradiance on lipids of the green alga Ulva fenestrata Postels et Ruprecht. Botanica Marina, 47(5), 395-401. https://doi.org/10.1515/bot.2004.050
  • Leclercq, C., Arcella, D., & Turrini, A. (2000). Estimates of the theoretical maximum daily intake of erythorbic acid, gallates, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in Italy: A stepwise approach. Food and Chemical Toxicology, 38(12), 1075-1084. https://doi.org/10.1016/s0278-6915(00)00106-x
  • Liu, H. L., Kao, T. H., & Chen, B. H. (2004). Determination of Carotenoids in the Chinese medical herb jiao-gu-lan (Gynostemma pentaphyllum MAKINO) by liquid chromatography. Chromatographia, 60(7/8), 411-417. https://doi.org/10.1365/s10337-004-0418-2
  • Maesaroh, K., Kurnia, D., & Anshori, J. A. (2018). Perbandingan metode uji aktivitas antioksidan DPPH, FRAP dan FIC terhadap asam askorbat, asam galat dan kuersetin. Chimica et Natura Acta, 6(2), 93-100. https://doi.org/https://doi.org/10.24198/cna.v6.n2.19049
  • Morone, J., Lopes, G., Preto, M., Vasconcelos, V., & Martins, R. (2020). Exploitation of filamentous and picoplanktonic cyanobacteria for cosmetic applications: Potential to improve skin structure and preserve dermal matrix components. Marine Drugs, 18(9), 486. https://doi.org/10.3390/md18090486
  • Niyogi, K. K., Björkman, O., & Grossman, A. R. (1997). The roles of specific xanthophylls in photoprotection. Proceedings of the National Academy of Sciences, 94(25), 14162-14167. https://doi.org/10.1073/pnas.94.25.14162
  • Oyaizu, M. (1986). Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  • Patrick, L. (2001). Beta carotene: The controversy continues. Alternative Medicine Review: A Journal of Clinical Therapeutic, 5(6), 530-545.
  • Putri, M. D., Arumasi, A., Kurniaty, N. (2020). Review artikel: Uji aktivitas antioksidan ekstrak daging buah semangka dan albedo semangka (Citrullus lanatus) dengan metode DPPH dan FRAP. Prosiding Farmasi, 6(2), 992-997. https://doi.org/10.29313/.v6i2.24206
  • Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55(3), 207–216. https://doi.org/10.1016/j.phrs.2007.01.012
  • Richmond, A., & Hu, Q. (Eds.) (2013). Handbook of microalgal culture: Biotechnology and applied phycology. Wiley-Blackwell Publishing.
  • Rodrigues, D. B., Menezes, C. R., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2015). Bioactive pigments from microalgae Phormidium autumnale. Food Research International, 77, 273-279. https://doi.org/10.1016/j.foodres.2015.04.027
  • Rodríguez-Meizoso, I., Jaime, L., Santoyo, S., Cifuentes, A., Reina, G. B., Señoráns, F., & Ibáñez, E. (2008). Pressurized fluid extraction of bioactive compounds from Phormidium species. Journal of Agricultural and Food Chemistry, 56(10), 3517-3523. https://doi.org/10.1021/jf703719p
  • Shanab, S. M. M., Mostafa, S. S. M., Shalaby, E. A., & Mahmoud, G. I. (2012). Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pacific Journal of Tropical Biomedicine, 2(8), 608-615. https://doi.org/10.1016/s2221-1691(12)60106-3
  • Soni, B., Trivedi, U. B., & Madamwar, D. (2008). A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresource Technology, 99(1), 188-194. https://doi.org/10.1016/j.biortech.2006.11.010
  • Sri Mariani, N. R. d. S. (2018). Antioxidant activity test of watermelon (Citrullus lanatus) fruit extracts. Jurnal Akademika Kimia, 7(2), 96-101.
  • Stange, C. (Ed.) (2016). Carotenoids in Nature: Biosynthesis, Regulation and Function. Springer.
  • Tahir, M., Heluth, A. C., & Widiastuti, H. (2018). Uji aktivitas antioksidan ekstrak buah semangka (Citrullus lanatus) dengan metode FRAP. As-Syifaa Jurnal Farmasi, 8(1), 31-38. https://doi.org/10.33096/jifa.v8i1.155
  • Wojtasiewicz, B., & Ston-Egiert, J. (2016). Bio-optical characterization of selected cyanobacteria strains present in marine and freshwater ecosystems. Journal of Applied Phycology, 28, 2299-2314. https://doi.org/10.1007/s10811-015-0774-3
  • Zuluaga, M., Gueguen, V., Pavon-Djavid, G., & Letourneur, D. (2017). Carotenoids from microalgae to block oxidative stress. Bioimpacts, 7(1), 1–3. https://doi.org/10.15171%2Fbi.2017.01
There are 37 citations in total.

Details

Primary Language English
Subjects Hydrobiology, Industrial Biotechnology, Microbiology
Journal Section Research Article
Authors

Yaşar Aluç 0000-0002-2650-2290

Publication Date June 24, 2022
Submission Date April 21, 2022
Acceptance Date June 2, 2022
Published in Issue Year 2022 Volume: 11 Issue: 2

Cite

APA Aluç, Y. (2022). Carotenoid Composition and Investigation of the Antioxidant Activity of Phormidium sp. Marine Science and Technology Bulletin, 11(2), 212-220. https://doi.org/10.33714/masteb.1106896
AMA Aluç Y. Carotenoid Composition and Investigation of the Antioxidant Activity of Phormidium sp. Mar. Sci. Tech. Bull. June 2022;11(2):212-220. doi:10.33714/masteb.1106896
Chicago Aluç, Yaşar. “Carotenoid Composition and Investigation of the Antioxidant Activity of Phormidium Sp”. Marine Science and Technology Bulletin 11, no. 2 (June 2022): 212-20. https://doi.org/10.33714/masteb.1106896.
EndNote Aluç Y (June 1, 2022) Carotenoid Composition and Investigation of the Antioxidant Activity of Phormidium sp. Marine Science and Technology Bulletin 11 2 212–220.
IEEE Y. Aluç, “Carotenoid Composition and Investigation of the Antioxidant Activity of Phormidium sp”., Mar. Sci. Tech. Bull., vol. 11, no. 2, pp. 212–220, 2022, doi: 10.33714/masteb.1106896.
ISNAD Aluç, Yaşar. “Carotenoid Composition and Investigation of the Antioxidant Activity of Phormidium Sp”. Marine Science and Technology Bulletin 11/2 (June 2022), 212-220. https://doi.org/10.33714/masteb.1106896.
JAMA Aluç Y. Carotenoid Composition and Investigation of the Antioxidant Activity of Phormidium sp. Mar. Sci. Tech. Bull. 2022;11:212–220.
MLA Aluç, Yaşar. “Carotenoid Composition and Investigation of the Antioxidant Activity of Phormidium Sp”. Marine Science and Technology Bulletin, vol. 11, no. 2, 2022, pp. 212-20, doi:10.33714/masteb.1106896.
Vancouver Aluç Y. Carotenoid Composition and Investigation of the Antioxidant Activity of Phormidium sp. Mar. Sci. Tech. Bull. 2022;11(2):212-20.

27116