Research Article
BibTex RIS Cite

Isolation, Molecular Characterization and Determination of Antagonistic Properties of Alkalitolerant Streptomyces Members from Van Lake-Çarpanak Island Soil

Year 2024, Volume: 13 Issue: 3, 183 - 198, 30.09.2024
https://doi.org/10.33714/masteb.1522501

Abstract

Çarpanak Island is one of the islands in Lake Van, the easternmost and largest lake in Türkiye. In this study, soil samples taken from three different locations of Çarpanak island, Lake Van, were inoculated into 4 different selective isolation media using the dilution plate technique, and 42 actinomycete isolates were stocked. PCR amplification of the 16S rRNA gene of 13 isolates selected according to their morphological differences was performed with 27F and 1525R primers. Phylogenetic trees were constructed with the neighbor-joining algorithm in the MEGA 7.0 software. According to 16S rRNA gene sequence analysis, it was determined that 13 isolates belonged to the genus Streptomyces. The antimicrobial activities of 13 isolates against 8 pathogens and the ability of these isolates to produce lipase, amylase, protease and pectinase were determined. Except for CA43 and CA62 isolates, other Streptomyces isolates have the ability to produce lipase. Other Streptomyces isolates except CA59 and CA94 can synthesize amylase. In addition, 3 of the 13 Streptomyces isolates, CA40, CA61 and CA94, do not have the ability to synthesize protease. No isolate is capable of producing pectinase enzyme. As a result of this study, it was observed that most of the Streptomyces isolates had higher lipase enzyme production abilities than other enzyme groups.

Ethical Statement

This article does not contain any studies with human participants and/or animals performed by any of the authors. Formal consent is not required in this study.

Supporting Institution

This research was supported by Sinop University

Project Number

SHMYO-1901-23-001

References

  • Arayes, M. A., Nawar, E. A., Sabry, S. A., & Mabrouk, M. E. (2022). Bioactive compounds from a haloalkalitolerant Streptomyces sp. EMSM31 isolated from Um-Risha Lake in Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 26(2), 307-330. https://doi.org/10.21608/ejabf.2022.229723
  • Arumugam, T., Kumar, P. S., Kameshwar, R., & Prapanchana, K. (2017) Screening of novel actinobacteria and characterization of the potential isolates from mangrove sediment of south coastal India. Microbial Pathogenesis, 107, 225-233. https://doi.org/10.1016/j.micpath.2017.03.035
  • Baldacci, E. (1944). Contributo alla systematica degli actenomyceti: X-XVI Actinomyces madurae; Proactinomyces ruber; Proactinomyces pseudomadurae; Proactinomyces polychromogenus; Proactinomyces violaceus; Actinomyces coeruleus; cjn un elencj alfabetico delle specie e delle varieta finora studiate. Atti dell'Istituto Botanico della Università e Laboratorio Crittogamico di Pavia, 3, 139-193.
  • Baranasic, D., Gacesa, R., Starcevic, A., Zucko, J., Blazic, M., Horvat, M., Gjuracic, K., Fujs, S., Hranueli, D., Kosec, G., Cullum, J., & Petkovic, H. (2013). Draft genome sequence of Streptomyces rapamycinicus Strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announc, 1, 1-2. https://doi.org/10.1128/genomeA.00581-13
  • Bentley, S. D., Maiwald, M., Murphy, L. D., Pallen, M. J., Yeats, C. A., Dover, L. G., Norbertczak, H. T., Besra, G. S., Quail, M. A., Harris, D. E., von Herbay, A., Goble, A., Rutter, S., Squares, R., Squares, S., Barrell, B. G., Parkhill, J., & Relman, D. A. (2003). Sequencing and analysis of the genome of the Whipple’s disease bacterium Tropheryma whipplei. The Lancet, 361(9358), 637-644. https://doi.org/10.1016/S0140-6736(03)12597-4
  • Beulah, D., Sunitha, E. M., Srilakshmi, T., Degree, P. G., Venkat, R. B., & Reddy, R. (2015). Production, purification and assay of pectinase enzyme from Aspergillus niger. Helix, 2, 673-677.
  • Buchholz-Cleven, B. E. E., Rattunde, B., & Straub, K. L. (1997). Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Systematic and Applied Microbiology, 20, 301-309. https://doi.org/10.1016/S0723-2020(97)80077-X
  • Bull, A. T. (2010). Actinobacteria of the extremobiosphere. In Horikoshi, K., Antranikian, G., Bull, A. T., Robb, F., & Stelter, K. (Eds.), Extremophiles handbook (pp. 1203-1240). Springer-Verlag GmbH.
  • Chalita, M., Kim, Y. O., Park, S., Oh, H. S., Cho, J. H., Moon, J., Baek, N., Moon, C., Lee, K., Yang, J., Nam, G. G., Jung, Y., Na, S. I., Bailey, M. J., & Chun, J. (2024). EzBioCloud: A genome-driven database and platform for microbiome identification and discovery. International Journal of Systematic and Evolutionary Microbiology, 74(6), 006421. https://doi.org/10.1099/ijsem.0.006421
  • Chanama, M., Suriyachadkun, C., & Chanama, S. (2023). Streptomyces antimicrobicus sp. nov., a novel clay soil-derived actinobacterium producing antimicrobials against drug-resistant bacteria. PLoS ONE, 18(5), e0286365. https://doi.org/10.1371/journal.pone.0286365
  • Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., & Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances, 33(6, Part 1), 745-755. https://doi.org/10.1016/j.biotechadv.2015.05.003
  • Chun, J. (1995). Computer assisted classification and identification of actinomycetes. [Ph.D. Thesis. University of Newcastle].
  • Chun, J., Bae, K. S, Moon, E. Y., Jung, S. O., Lee, H. K., & Kim, S. J. (2000). Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. International Journal of Systematic and Evolutionary Microbiology, 50(5), 1909-1913. https://doi.org/10.1099/00207713-50-5-1909
  • Cockell, C. S., Kelly, L. C., & Marteinsson, V. (2013). Actinobacteria- An ancient phylum active in volcanic rock weathering. Geomicrobiology Journal, 30(8), 706-720. https://doi.org/10.1080/01490451.2012.758196
  • Cukur, D., Krastel, S., Schmincke, H. U., Sumita, M., Çağatay, M. N., Meydan, A. F., Damcı, E., & Stockhecke, M. (2014). Seismic stratigraphy of Lake Van, eastern Turkey. Quaternary Science Reviews, 104, 63-84. https://doi.org/10.1016/j.quascirev.2014.07.016
  • Das, P., Kundu, S., Maiti, P. K., Mandal, S., Sahoo, P., & Mandal, S. (2022). An antibacterial compound pyrimidomycin produced by Streptomyces sp. PSAA01 isolated from soil of Eastern Himalayan foothill. Scientific Reports, 12, 10176. https://doi.org/10.1038/s41598-022-14549-4
  • Dhakal, D., Pokhrel, A. R., Shrestha, B., & Sohng, J. K. (2017). Marine rare actinobacteria: Isolation, characterization, and strategies for harnessing bioactive compounds. Frontiers in Microbiology, 8, 1106. https://doi.org/10.3389/fmicb.2017.01106
  • Ensign, J. C. (1992). Introduction to the Actinomycetes. In A. Balows, H. G. Truper, M. Dworkin, W. Hardeer & K. H. Schleifer (Eds.), The Prokaryotes 2nd Edition. Vol. II, (pp. 811-815). Springer-Verlag.
  • Felsenstein, J. (1985). Confidence limits on phylogeny: An appropriate use of the bootstrap. Evolution, 39, 783-791. https://doi.org/10.2307/2408678
  • Flores-Gallegos, A. C., & Nava-Reyna, E. (2019). Chapter 30 - Plant growth-promoting microbial enzymes. In Kuddus, M. (Ed.), Enzymes in food biotechnology: Production, applications, and future prospects (pp. 521-534). Academic Press. https://doi.org/10.1016/B978-0-12-813280-7.00030-X
  • Fossi, B. T., Tavea, F., Jiwoua, C., & Ndjouenke, R. (2009). Screening and phenotypic characterization of thermostable amylases producing yeasts and bacteria strains from some Cameroonian soils. African Journal of Microbiology Research, 3(9), 504-514. https://doi.org/10.5897/AJMR.9000640
  • Gardner, H. L., & Dukes, C. D. (1955). Haemophilus vaginalis vaginitis. A newly defined specific infection previously classified “non-specific” vaginitis. American Journal of Obstetrics and Gynecology, 69, 962-976. https://doi.org/10.1016/0002-9378(55)90095-8
  • Growth, I., Schumann, P., Rainey, F. A., Martin, K., Schuetze, B., & Augsten, K. (1997). Bogoriella caseilytica gen. nov., sp. nov., a new alkaliphilic actinomycete from a soda lake in Africa. International Journal of Systematic Bacteriology, 47, 788-794. https://doi.org/10.1099/00207713-47-3-788
  • Gu, C. Z., Yuan, S. H., Lu, J., Qiao, Y. J., Song, Elzaki, M. E. A., Yang, C.-R., Zhang, Y.-Z., & Zeng, R.-S. (2019). Albocyline-type macrolides with antibacterial activities from Streptomyces sp. 4205. Chemistry & Biodiversity, 16(1), e18000344. https://doi.org/10.1002/cbdv.201800344
  • Hamedi, J., Kafshnouchi, M., & Ranjbaran, M. (2019). A study on actinobacterial diversity of Hampoeil cave and screening of their biological activities. Saudi Journal of Biological Sciences, 26(7), 1587-1595. https://doi.org/10.1016/j.sjbs.2018.10.010
  • Hayakawa, M., & Nonomura, H. (1987). Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. Journal of Fermentation Technology, 65(5), 501-509. https://doi.org/10.1016/0385-6380(87)90108-7
  • Horikoshi, K. (2008). Alkaliphiles. In eLS (Ed.). https://doi.org/10.1002/9780470015902.a0000337.pub2
  • Hu, H., Lin, H. P., Xie, Q., Li, L., Xie, X. Q., & Hong, K. (2012). Streptomyces qinglanensis sp. nov., isolated from mangrove sediment. International Journal of Systematic and Evolutionary Microbiology, 62(Pt_3), 596–600. https://doi.org/10.1099/ijs.0.032201-0
  • Jiang, C., & Xu, L. (1993). Actinomycete diversity in unusual habitats. Actinomycetes, 4, 47-57.
  • Johnson, D. B., Bacelar-Nicolau, P., Okibe, N., Thomas, A., & Hallberg, K. B. (2009). Ferrimicrobium acidiphilum gen. nov., and Ferrithrix thermotolerans gen. nov., sp. nov.: Heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. International Journal of Systematic and Evolutionary Microbiology, 59(5), 1082-1089. https://doi.org/10.1099/ijs.0.65409-0
  • Jones, B. E., Grant, W. D., Duckworth, A. W., & Owenson, G. G. (1998). Microbial diversity of soda lakes. Extremophiles, 2, 191-200. https://doi.org/10.1007/s007920050060
  • Jones, K. L. (1949). Fresh Isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. Journal of Bacteriology, 57, 141-145. https://doi.org/10.1128/jb.57.2.141-145.1949
  • Kanekar, P. P., Nilegaonkar, S. S., Sarnaik, S. S., & Kelkar, A. S. (2002). Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Bioresource Technology, 85(1), 87-93. https://doi.org/10.1016/s0960-8524(02)00018-4
  • Kim, S, B., Lonsdale, J., Seong, C. N., & Goodfellow, M. (2003). Streptoacidiphilus gen. nov., acidophilic actinomycetes with chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici (1943)AL) emend. Rainey et al. 1997. Antonie Van Leeuwenhoek, 83, 107–116. https://doi.org/10.1023/a:1023397724023
  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120. https://doi.org/10.1007/BF01731581
  • Kumar, A., & Sharma, R. (2012). Production of alkaline pectinase by bacteria (Cocci sps.) isolated from decomposing fruit materials. Journal of Phytology, 4, 1-5.
  • Kumar, R., Sharma, A., Kumar, A., & Singh, D. (2012). Lipase from Bacillus pumilus RK31: Production, purification and some properties. World Applied Sciences Journal, 16(7), 940-948.
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
  • Kurapova, I., Zenova, G. M., Sudnitsyn, II., Kizilova, A. K., Manucharova, N. A., Norovsuren, Z. H., & Zvyagintsev, D. G. (2012). Thermotolerant and thermophilic actinomycetes from soils of Mongolia Desert Steppe Zone. Microbiology, 81, 98-108. https://doi.org/10.1134/S0026261712010092
  • Küster, E., & Williams, S. (1964). Selection of media for isolation of Streptomycetes. Nature, 202, 928-929. https://doi.org/10.1038/202928a0
  • Law, J. W. F., Ser, H. L., Ab Mutalib, N, S., Saokaew, S., Duangjai, A., Khan, T. M., Chan, K.-G., Goh, B.-H., & Lee, L.-H. (2019). Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Scientific Reports, 9, 3056. https://doi.org/10.1038/s41598-019-39592-6
  • Li, L. Y., Yang, Z. W., Asem, M. D., Fang, B. Z., Salam, N., Alkhalifah, D. H. M., Hozzein, W. N., Nie, G.-X., & Li, W.-J. (2019). Streptomyces desertarenae sp. nov., a novel actinobacterium isolated from a desert sample. Antonie Van Leeuwenhoek, 112, 367–374. https://doi.org/10.1007/s10482-018-1163-0
  • Li, W. J., Zhang, Y. Q., Schumann, P., Chen, H. H., Hozzein, W. N., Tian, X. P., Xu, L. H., & Jiang, C. L. (2006). Kocuria aegyptia sp. nov., a novel actinobacteria isolated from a saline, alkaline desert soil in Egypt. International Journal of Systematic and Evolutionary Microbiology, 56(4), 733-737. https://doi.org/10.1099/ijs.0.63876-0
  • Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial antibiotic resistance: The most critical pathogens. Pathogens, 10, 1310. https://doi.org/10.3390/pathogens10101310
  • Mansour, S. R., Abdel-Azeem, A. M., & Abo-Deraz, S. S. S. (2015). A new record of Actinobacteria isolated from soil in Jerusalem and their enzymatic potential. F1000Research, 4, 11. https://doi.org/10.12688/f1000research.3257.1
  • McCarthy, A. J., Peace, E., & Broda, P. (1985). Studies on the extracellular xylanase activity of some thermophilic actinomycetes. Applied Microbiology and Biotechnology, 21, 238-244. https://doi.org/10.1007/BF00295129
  • Meklat, A., Bouras, N., Mokrane, S., Zitouni, A., Djemouai, N., Klenk, H. P., Sabaou, N., & Mathieu, F. (2020). Isolation, classification and antagonistic properties of alkalitolerant actinobacteria from Algerian Saharan soils. Geomicrobiology Journal, 37(9), 826-836. https://doi.org/10.1080/01490451.2020.1786865
  • Mohamedin, A. H. (1999). Isolation, identification and some cultural conditions of a protease-producing thermophilic Streptomyces strain grown on chicken feather as a substrate. International Biodeterioration & Biodegradation, 43(1-2), 13-21. https://doi.org/10.1016/S0964-8305(98)00061-4
  • Nithya, K., Muthukumar, C., Biswas, B., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., & Dhanasearan, D. (2018). Desert actinobacteria as a source of bioactive compounds production with a special emphases on Pyridine-2,5-diacetamide a new pyridine alkaloid produced by Streptomyces sp. DA3-7. Microbiological Research, 207, 116-133. https://doi.org/10.1016/j.micres.2017.11.012
  • Oumer, O. J., & Abate, D. (2018). Screening and molecular identification of pectinase producing microbes from coffee pulp. BioMed Research International. 2018, 2961767. https://doi.org/10.1155/2018/2961767
  • Palaniyandi, S. A., Yang, S. H., Zhang, L., & Suh, J. W. (2013). Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology, 97, 9621-9636. https://doi.org/10.1007/s00253-013-5206-1
  • Panyachanakul, T., Lomthong, T., Lorliam, W., Prajanbarn, J., Tokuyama, S., Kitpreechavanich, V., & Krajangsang, S. (2020). New insight into thermo-solvent tolerant lipase produced by Streptomyces sp. A3301 for re-polymerization of poly (DL-lactic acid). Polymer, 204, 122812. https://doi.org/10.1016/j.polymer.2020.122812
  • Pati, A., Sikorski, J., Nolan, M., Lapidus, A., Copeland, A., Glavina Del Rio, T., Lucas, S., Chen, F., Tice, H., Pitluck, S., Cheng, J. F., Chertkov, O., Brettin, T., Han, C., Detter, J. C., Kuske, C., Bruce, D., Goodwin, L., Chain, P., D'haeseleer, P., Chen, A., Palaniappan, K., Ivanova, N., Mavromatis, K., Mikhailova, N., Rohde, M., Tindall, B. J., Göker, M., Bristow, J., Eisen, J. A., Markowitz, V., Hugenholtz, P., Kyrpides, N. C., & Klenk, H. P. (2009). Complete genome sequence of Saccharomonospora viridis type strain (P101T). Standards in Genomic Sciences, 1, 141-149. https://doi.org/10.4056/sigs.20263
  • Piao, C., Ling, L., Zhao, J., Jin, L., Jiang, S., Guo, X., Wang, X., & Xiang, W. (2018) Streptomyces urticae sp. nov., isolated from rhizosphere soil of Urtica urens L. Antonie Van Leeuwenhoek, 111, 1835–1843. https://doi.org/10.1007/s10482-018-1072-2
  • Poyraz, N., & Mutlu, M. (2017). Alkaliphilic bacterial diversity of Lake Van/Turkey. Biological Diversity and Conservation, 10(1), 92-103.
  • Priyanka, S. B. (2019). Isolation, purification and characterization of pectinase enzyme from Streptomyces thermocarboxydus. Journal of Biotechnology & Bioresearch, 1(5), JBB.000523.201. https://doi.org/10.31031/jbb.2019.01.000523
  • Raju, E. V. N., & Divakar, G. (2013). Screening and isolation of Pectinase producing bacteria from various regions in Bangalore. International Journal of Research in Pharmaceutical and Biomedical Sciences, 4(1), 151-154.
  • Ray, L., Mishra, S. R., Panda, A. N., Das, S., Rastogi, G., Pattanaik, A. K., Adhya, T. K., Suar, M., & Raina, V. (2016). Streptomyces chitinivorans sp. nov., a chitinolytic strain isolated from estuarine lake sediment. International Journal of Systematic and Evolutionary Microbiology, 66, 3241–3248. https://doi.org/10.1099/ijsem.0.001176
  • Reasoner, D. J., & Geldreich, E. E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49(1), 1-7. https://doi.org/10.1128/aem.49.1.1-7.1985
  • Reimer, A., Landmann, G., & Kempe, S. (2009). Lake Van, eastern Anatolia, hydrochemistry and history. Aquatic Geochemistry, 15, 195-222. https://doi.org/10.1007/s10498-008-9049-9
  • Sağlam, M. T. (1978). Toprak kimyası tatbikat notları. Atatürk Üniversitesi.
  • Saitou, N., & Nei, M. (1987). The neighbour-joining method: A new method for constructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  • Saricaoglu, S., Isik, K., Veyisoglu, A., Saygin, H., Cetin, D., Guven, K., Spröer, C., Klenk, H.-P., & Sahin, N. (2014). Streptomyces burgazadensis sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_12), 4043–4048. https://doi.org/10.1099/ijs.0.065870-0
  • Sharma, P., & Thakur, D. (2020). Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Scientific Reports, 10, 4104. https://doi.org/10.1038/s41598-020-60968-6
  • Shirling, E. B., & Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology, 16(3), 313-340. https://doi.org/10.1099/00207713-16-3-313
  • Shivlata, L., & Satyanarayana, T. (2015). Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications. Frontiers in Microbiology, 6, 1014. https://doi.org/10.3389/fmicb.2015.01014
  • Silva, F. S. P., Souza, D. T., Zucchi, T. D., Pansa, C. C., de Figueiredo Vasconcellos, R. L., Crevelin, E. J., de Moraes, L. A. B., & Melo, I. S. (2016). Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766). Antonie Van Leeuwenhoek, 109, 1467–1474. https://doi.org/10.1007/s10482-016-0748-8
  • Sorokin, D. Y., Tourova, T. P., Panteleeva, A. N., & Muyzer, G. (2012). Desulfonatronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes. International Journal of Systematic and Evolutionary Microbiology, 62(Pt_9), 2107-2113. https://doi.org/10.1099/ijs.0.029777-0
  • Stackebrandt, E., & Ebers, J. (2006). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today, 33, 152–155.
  • Stackebrandt, E., & Goebel, B. (1994). Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 44(4), 846-849. https://doi.org/10.1099/00207713-44-4-846
  • Stackebrandt, E., Rainey, F. A., & Ward-Rainey, N. L. (1997). Proposal for a new hierarchic classification system. Actinobacteria classis nov. International Journal of Systematic Bacteriology, 47(2), 479–491. https://doi.org/10.1099/00207713-47-2-479
  • Sujarit, K., Kudo, T., Ohkuma, M., Pathom-Aree, W., & Lumyong, S. (2018). Streptomyces venetus sp. nov., an actinomycete with a blue aerial mycelium. International Journal of Systematic and Evolutionary Microbiology, 68(10), 3333–3339. https://doi.org/10.1099/ijsem.0.002995
  • Świecimska, M., Golińska, P., Nouioui, I., Wypij, M., Rai, M., Sangal, V., & Goodfellow, M. (2020). Streptomyces alkaliterrae sp. nov., isolated from an alkaline soil, and emended descriptions of Streptomyces alkaliphilus, Streptomyces calidiresistens and Streptomyces durbertensis. Systematic and Applied Microbiology, 43(6), 126153. https://doi.org/10.1016/j.syapm.2020.126153
  • Taber, W. A. (1960). Studies on Isaria cretacea: Morphogenesis of the synnema and endogenous nutrition. Canadian Journal of Microbiology, 6(1), 53-63. https://doi.org/10.1139/m60-008
  • Tan, G. Y. A., Ward, A. C., & Goodfellow, M. (2006). Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Systematic and Applied Microbiology, 29(7), 557-569. https://doi.org/10.1016/j.syapm.2006.01.007
  • Thampi, A., & Bhai, R. S. (2017). Rhizosphere actinobacteria for combating Phytophthora capsici and Sclerotium rolfsii, the major soil borne pathogens of black pepper (Piper nigrum L.). Biological Control, 109, 1-13. https://doi.org/10.1016/j.biocontrol.2017.03.006
  • Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G. F., Chater, K. F., & van Sinderen, D. (2007). Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiology and Molecular Biology Reviews, 71(3), 495-548. https://doi.org/10.1128/mmbr.00005-07
  • Veyisoglu, A., & Sahin, N. (2014). Streptomyces hoynatensis sp. nov., isolated from deep marine sediment. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_3), 819–826. https://doi.org/10.1099/ijs.0.055640-0
  • Waksman, S. A., & Henrici, A. T. (1943). The nomenclature and classification of the actinomycetes. Journal of Bacteriology, 46(4), 337–341. https://doi.org/10.1128/jb.46.4.337-341.1943
  • Wang, Z., Tian, J., Li, X., Gan, L., He, L., Chu, Y., Tian, Y. (2018). Streptomyces dioscori sp. nov., a novel endophytic actinobacterium isolated from Bulbil of Dioscorea bulbifera L. Current Microbiology, 75, 1384–1390. https://doi.org/10.1007/s00284-018-1534-9
  • Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M. H., Sneath, P. H. A., & Sackin, M. J. (1983). Numerical classification of Streptomyces and related genera. Journal of General Microbiology, 129(6), 1743-1813. https://doi.org/10.1099/00221287-129-6-1743
  • Yu, J., Zhang, L., Liu, Q., Qi, X., Ji, Y., & Kim, B. S. (2015). Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China. Asian Pacific Journal of Tropical Biomedicine, 5(7), 555-560. https://doi.org/10.1016/j.apjtb.2015.04.007
  • Yu, L., Lai, Q., Yi, Z., Zhang, L., Huang, Y., Gu, L., & Tang, X. (2013). Microbacterium sediminis sp. nov., a psychrotolerant, thermotolerant, halotolerant and alkalitolerant actinomycete isolated from deep-sea sediment. International Journal of Systematic Bacteriology, 63(Pt_1), 25-30. https://doi.org/10.1099/ijs.0.029652-0
  • Zarilla, K. A., & Perry, J. J. (1986). Deoxyribonucleic acid homology and other comparisons among obligately thermophilic hydrocarbonoclastic bacteria, with a proposal for Thermoleophilum minutum sp. nov. International Journal of Systematic Bacteriology, 36(1), 13-16. https://doi.org/10.1099/00207713-36-1-13
  • Zenova, G. M., Manucharova, N. A., & Zvyagintsev, D. G. (2011). Extremophilic and extremotolerant actinomycetes in different soil types. Eurasian Soil Science, 44, 417-436. https://doi.org/10.1134/S1064229311040132
  • Zhi, X. Y., Li, W. J., & Stackebrandt, E. (2009). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. International Journal of Systematic and Evolutionary Microbiology, 59(3), 589-608. https://doi.org/10.1099/ijs.0.65780-0
  • Zhu, C., Xu, B., Adpressa, D. A., Rudolf, J. D., & Loesgen, S. (2021). Discovery and biosynthesis of a structurally dynamic antibacterial diterpenoid. Angewandte Chemie International Edition, 60(25), 14163–14170. https://doi.org/10.1002/anie.202102453
Year 2024, Volume: 13 Issue: 3, 183 - 198, 30.09.2024
https://doi.org/10.33714/masteb.1522501

Abstract

Project Number

SHMYO-1901-23-001

References

  • Arayes, M. A., Nawar, E. A., Sabry, S. A., & Mabrouk, M. E. (2022). Bioactive compounds from a haloalkalitolerant Streptomyces sp. EMSM31 isolated from Um-Risha Lake in Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 26(2), 307-330. https://doi.org/10.21608/ejabf.2022.229723
  • Arumugam, T., Kumar, P. S., Kameshwar, R., & Prapanchana, K. (2017) Screening of novel actinobacteria and characterization of the potential isolates from mangrove sediment of south coastal India. Microbial Pathogenesis, 107, 225-233. https://doi.org/10.1016/j.micpath.2017.03.035
  • Baldacci, E. (1944). Contributo alla systematica degli actenomyceti: X-XVI Actinomyces madurae; Proactinomyces ruber; Proactinomyces pseudomadurae; Proactinomyces polychromogenus; Proactinomyces violaceus; Actinomyces coeruleus; cjn un elencj alfabetico delle specie e delle varieta finora studiate. Atti dell'Istituto Botanico della Università e Laboratorio Crittogamico di Pavia, 3, 139-193.
  • Baranasic, D., Gacesa, R., Starcevic, A., Zucko, J., Blazic, M., Horvat, M., Gjuracic, K., Fujs, S., Hranueli, D., Kosec, G., Cullum, J., & Petkovic, H. (2013). Draft genome sequence of Streptomyces rapamycinicus Strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announc, 1, 1-2. https://doi.org/10.1128/genomeA.00581-13
  • Bentley, S. D., Maiwald, M., Murphy, L. D., Pallen, M. J., Yeats, C. A., Dover, L. G., Norbertczak, H. T., Besra, G. S., Quail, M. A., Harris, D. E., von Herbay, A., Goble, A., Rutter, S., Squares, R., Squares, S., Barrell, B. G., Parkhill, J., & Relman, D. A. (2003). Sequencing and analysis of the genome of the Whipple’s disease bacterium Tropheryma whipplei. The Lancet, 361(9358), 637-644. https://doi.org/10.1016/S0140-6736(03)12597-4
  • Beulah, D., Sunitha, E. M., Srilakshmi, T., Degree, P. G., Venkat, R. B., & Reddy, R. (2015). Production, purification and assay of pectinase enzyme from Aspergillus niger. Helix, 2, 673-677.
  • Buchholz-Cleven, B. E. E., Rattunde, B., & Straub, K. L. (1997). Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Systematic and Applied Microbiology, 20, 301-309. https://doi.org/10.1016/S0723-2020(97)80077-X
  • Bull, A. T. (2010). Actinobacteria of the extremobiosphere. In Horikoshi, K., Antranikian, G., Bull, A. T., Robb, F., & Stelter, K. (Eds.), Extremophiles handbook (pp. 1203-1240). Springer-Verlag GmbH.
  • Chalita, M., Kim, Y. O., Park, S., Oh, H. S., Cho, J. H., Moon, J., Baek, N., Moon, C., Lee, K., Yang, J., Nam, G. G., Jung, Y., Na, S. I., Bailey, M. J., & Chun, J. (2024). EzBioCloud: A genome-driven database and platform for microbiome identification and discovery. International Journal of Systematic and Evolutionary Microbiology, 74(6), 006421. https://doi.org/10.1099/ijsem.0.006421
  • Chanama, M., Suriyachadkun, C., & Chanama, S. (2023). Streptomyces antimicrobicus sp. nov., a novel clay soil-derived actinobacterium producing antimicrobials against drug-resistant bacteria. PLoS ONE, 18(5), e0286365. https://doi.org/10.1371/journal.pone.0286365
  • Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., & Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances, 33(6, Part 1), 745-755. https://doi.org/10.1016/j.biotechadv.2015.05.003
  • Chun, J. (1995). Computer assisted classification and identification of actinomycetes. [Ph.D. Thesis. University of Newcastle].
  • Chun, J., Bae, K. S, Moon, E. Y., Jung, S. O., Lee, H. K., & Kim, S. J. (2000). Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. International Journal of Systematic and Evolutionary Microbiology, 50(5), 1909-1913. https://doi.org/10.1099/00207713-50-5-1909
  • Cockell, C. S., Kelly, L. C., & Marteinsson, V. (2013). Actinobacteria- An ancient phylum active in volcanic rock weathering. Geomicrobiology Journal, 30(8), 706-720. https://doi.org/10.1080/01490451.2012.758196
  • Cukur, D., Krastel, S., Schmincke, H. U., Sumita, M., Çağatay, M. N., Meydan, A. F., Damcı, E., & Stockhecke, M. (2014). Seismic stratigraphy of Lake Van, eastern Turkey. Quaternary Science Reviews, 104, 63-84. https://doi.org/10.1016/j.quascirev.2014.07.016
  • Das, P., Kundu, S., Maiti, P. K., Mandal, S., Sahoo, P., & Mandal, S. (2022). An antibacterial compound pyrimidomycin produced by Streptomyces sp. PSAA01 isolated from soil of Eastern Himalayan foothill. Scientific Reports, 12, 10176. https://doi.org/10.1038/s41598-022-14549-4
  • Dhakal, D., Pokhrel, A. R., Shrestha, B., & Sohng, J. K. (2017). Marine rare actinobacteria: Isolation, characterization, and strategies for harnessing bioactive compounds. Frontiers in Microbiology, 8, 1106. https://doi.org/10.3389/fmicb.2017.01106
  • Ensign, J. C. (1992). Introduction to the Actinomycetes. In A. Balows, H. G. Truper, M. Dworkin, W. Hardeer & K. H. Schleifer (Eds.), The Prokaryotes 2nd Edition. Vol. II, (pp. 811-815). Springer-Verlag.
  • Felsenstein, J. (1985). Confidence limits on phylogeny: An appropriate use of the bootstrap. Evolution, 39, 783-791. https://doi.org/10.2307/2408678
  • Flores-Gallegos, A. C., & Nava-Reyna, E. (2019). Chapter 30 - Plant growth-promoting microbial enzymes. In Kuddus, M. (Ed.), Enzymes in food biotechnology: Production, applications, and future prospects (pp. 521-534). Academic Press. https://doi.org/10.1016/B978-0-12-813280-7.00030-X
  • Fossi, B. T., Tavea, F., Jiwoua, C., & Ndjouenke, R. (2009). Screening and phenotypic characterization of thermostable amylases producing yeasts and bacteria strains from some Cameroonian soils. African Journal of Microbiology Research, 3(9), 504-514. https://doi.org/10.5897/AJMR.9000640
  • Gardner, H. L., & Dukes, C. D. (1955). Haemophilus vaginalis vaginitis. A newly defined specific infection previously classified “non-specific” vaginitis. American Journal of Obstetrics and Gynecology, 69, 962-976. https://doi.org/10.1016/0002-9378(55)90095-8
  • Growth, I., Schumann, P., Rainey, F. A., Martin, K., Schuetze, B., & Augsten, K. (1997). Bogoriella caseilytica gen. nov., sp. nov., a new alkaliphilic actinomycete from a soda lake in Africa. International Journal of Systematic Bacteriology, 47, 788-794. https://doi.org/10.1099/00207713-47-3-788
  • Gu, C. Z., Yuan, S. H., Lu, J., Qiao, Y. J., Song, Elzaki, M. E. A., Yang, C.-R., Zhang, Y.-Z., & Zeng, R.-S. (2019). Albocyline-type macrolides with antibacterial activities from Streptomyces sp. 4205. Chemistry & Biodiversity, 16(1), e18000344. https://doi.org/10.1002/cbdv.201800344
  • Hamedi, J., Kafshnouchi, M., & Ranjbaran, M. (2019). A study on actinobacterial diversity of Hampoeil cave and screening of their biological activities. Saudi Journal of Biological Sciences, 26(7), 1587-1595. https://doi.org/10.1016/j.sjbs.2018.10.010
  • Hayakawa, M., & Nonomura, H. (1987). Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. Journal of Fermentation Technology, 65(5), 501-509. https://doi.org/10.1016/0385-6380(87)90108-7
  • Horikoshi, K. (2008). Alkaliphiles. In eLS (Ed.). https://doi.org/10.1002/9780470015902.a0000337.pub2
  • Hu, H., Lin, H. P., Xie, Q., Li, L., Xie, X. Q., & Hong, K. (2012). Streptomyces qinglanensis sp. nov., isolated from mangrove sediment. International Journal of Systematic and Evolutionary Microbiology, 62(Pt_3), 596–600. https://doi.org/10.1099/ijs.0.032201-0
  • Jiang, C., & Xu, L. (1993). Actinomycete diversity in unusual habitats. Actinomycetes, 4, 47-57.
  • Johnson, D. B., Bacelar-Nicolau, P., Okibe, N., Thomas, A., & Hallberg, K. B. (2009). Ferrimicrobium acidiphilum gen. nov., and Ferrithrix thermotolerans gen. nov., sp. nov.: Heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. International Journal of Systematic and Evolutionary Microbiology, 59(5), 1082-1089. https://doi.org/10.1099/ijs.0.65409-0
  • Jones, B. E., Grant, W. D., Duckworth, A. W., & Owenson, G. G. (1998). Microbial diversity of soda lakes. Extremophiles, 2, 191-200. https://doi.org/10.1007/s007920050060
  • Jones, K. L. (1949). Fresh Isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. Journal of Bacteriology, 57, 141-145. https://doi.org/10.1128/jb.57.2.141-145.1949
  • Kanekar, P. P., Nilegaonkar, S. S., Sarnaik, S. S., & Kelkar, A. S. (2002). Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Bioresource Technology, 85(1), 87-93. https://doi.org/10.1016/s0960-8524(02)00018-4
  • Kim, S, B., Lonsdale, J., Seong, C. N., & Goodfellow, M. (2003). Streptoacidiphilus gen. nov., acidophilic actinomycetes with chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici (1943)AL) emend. Rainey et al. 1997. Antonie Van Leeuwenhoek, 83, 107–116. https://doi.org/10.1023/a:1023397724023
  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120. https://doi.org/10.1007/BF01731581
  • Kumar, A., & Sharma, R. (2012). Production of alkaline pectinase by bacteria (Cocci sps.) isolated from decomposing fruit materials. Journal of Phytology, 4, 1-5.
  • Kumar, R., Sharma, A., Kumar, A., & Singh, D. (2012). Lipase from Bacillus pumilus RK31: Production, purification and some properties. World Applied Sciences Journal, 16(7), 940-948.
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
  • Kurapova, I., Zenova, G. M., Sudnitsyn, II., Kizilova, A. K., Manucharova, N. A., Norovsuren, Z. H., & Zvyagintsev, D. G. (2012). Thermotolerant and thermophilic actinomycetes from soils of Mongolia Desert Steppe Zone. Microbiology, 81, 98-108. https://doi.org/10.1134/S0026261712010092
  • Küster, E., & Williams, S. (1964). Selection of media for isolation of Streptomycetes. Nature, 202, 928-929. https://doi.org/10.1038/202928a0
  • Law, J. W. F., Ser, H. L., Ab Mutalib, N, S., Saokaew, S., Duangjai, A., Khan, T. M., Chan, K.-G., Goh, B.-H., & Lee, L.-H. (2019). Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Scientific Reports, 9, 3056. https://doi.org/10.1038/s41598-019-39592-6
  • Li, L. Y., Yang, Z. W., Asem, M. D., Fang, B. Z., Salam, N., Alkhalifah, D. H. M., Hozzein, W. N., Nie, G.-X., & Li, W.-J. (2019). Streptomyces desertarenae sp. nov., a novel actinobacterium isolated from a desert sample. Antonie Van Leeuwenhoek, 112, 367–374. https://doi.org/10.1007/s10482-018-1163-0
  • Li, W. J., Zhang, Y. Q., Schumann, P., Chen, H. H., Hozzein, W. N., Tian, X. P., Xu, L. H., & Jiang, C. L. (2006). Kocuria aegyptia sp. nov., a novel actinobacteria isolated from a saline, alkaline desert soil in Egypt. International Journal of Systematic and Evolutionary Microbiology, 56(4), 733-737. https://doi.org/10.1099/ijs.0.63876-0
  • Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial antibiotic resistance: The most critical pathogens. Pathogens, 10, 1310. https://doi.org/10.3390/pathogens10101310
  • Mansour, S. R., Abdel-Azeem, A. M., & Abo-Deraz, S. S. S. (2015). A new record of Actinobacteria isolated from soil in Jerusalem and their enzymatic potential. F1000Research, 4, 11. https://doi.org/10.12688/f1000research.3257.1
  • McCarthy, A. J., Peace, E., & Broda, P. (1985). Studies on the extracellular xylanase activity of some thermophilic actinomycetes. Applied Microbiology and Biotechnology, 21, 238-244. https://doi.org/10.1007/BF00295129
  • Meklat, A., Bouras, N., Mokrane, S., Zitouni, A., Djemouai, N., Klenk, H. P., Sabaou, N., & Mathieu, F. (2020). Isolation, classification and antagonistic properties of alkalitolerant actinobacteria from Algerian Saharan soils. Geomicrobiology Journal, 37(9), 826-836. https://doi.org/10.1080/01490451.2020.1786865
  • Mohamedin, A. H. (1999). Isolation, identification and some cultural conditions of a protease-producing thermophilic Streptomyces strain grown on chicken feather as a substrate. International Biodeterioration & Biodegradation, 43(1-2), 13-21. https://doi.org/10.1016/S0964-8305(98)00061-4
  • Nithya, K., Muthukumar, C., Biswas, B., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., & Dhanasearan, D. (2018). Desert actinobacteria as a source of bioactive compounds production with a special emphases on Pyridine-2,5-diacetamide a new pyridine alkaloid produced by Streptomyces sp. DA3-7. Microbiological Research, 207, 116-133. https://doi.org/10.1016/j.micres.2017.11.012
  • Oumer, O. J., & Abate, D. (2018). Screening and molecular identification of pectinase producing microbes from coffee pulp. BioMed Research International. 2018, 2961767. https://doi.org/10.1155/2018/2961767
  • Palaniyandi, S. A., Yang, S. H., Zhang, L., & Suh, J. W. (2013). Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology, 97, 9621-9636. https://doi.org/10.1007/s00253-013-5206-1
  • Panyachanakul, T., Lomthong, T., Lorliam, W., Prajanbarn, J., Tokuyama, S., Kitpreechavanich, V., & Krajangsang, S. (2020). New insight into thermo-solvent tolerant lipase produced by Streptomyces sp. A3301 for re-polymerization of poly (DL-lactic acid). Polymer, 204, 122812. https://doi.org/10.1016/j.polymer.2020.122812
  • Pati, A., Sikorski, J., Nolan, M., Lapidus, A., Copeland, A., Glavina Del Rio, T., Lucas, S., Chen, F., Tice, H., Pitluck, S., Cheng, J. F., Chertkov, O., Brettin, T., Han, C., Detter, J. C., Kuske, C., Bruce, D., Goodwin, L., Chain, P., D'haeseleer, P., Chen, A., Palaniappan, K., Ivanova, N., Mavromatis, K., Mikhailova, N., Rohde, M., Tindall, B. J., Göker, M., Bristow, J., Eisen, J. A., Markowitz, V., Hugenholtz, P., Kyrpides, N. C., & Klenk, H. P. (2009). Complete genome sequence of Saccharomonospora viridis type strain (P101T). Standards in Genomic Sciences, 1, 141-149. https://doi.org/10.4056/sigs.20263
  • Piao, C., Ling, L., Zhao, J., Jin, L., Jiang, S., Guo, X., Wang, X., & Xiang, W. (2018) Streptomyces urticae sp. nov., isolated from rhizosphere soil of Urtica urens L. Antonie Van Leeuwenhoek, 111, 1835–1843. https://doi.org/10.1007/s10482-018-1072-2
  • Poyraz, N., & Mutlu, M. (2017). Alkaliphilic bacterial diversity of Lake Van/Turkey. Biological Diversity and Conservation, 10(1), 92-103.
  • Priyanka, S. B. (2019). Isolation, purification and characterization of pectinase enzyme from Streptomyces thermocarboxydus. Journal of Biotechnology & Bioresearch, 1(5), JBB.000523.201. https://doi.org/10.31031/jbb.2019.01.000523
  • Raju, E. V. N., & Divakar, G. (2013). Screening and isolation of Pectinase producing bacteria from various regions in Bangalore. International Journal of Research in Pharmaceutical and Biomedical Sciences, 4(1), 151-154.
  • Ray, L., Mishra, S. R., Panda, A. N., Das, S., Rastogi, G., Pattanaik, A. K., Adhya, T. K., Suar, M., & Raina, V. (2016). Streptomyces chitinivorans sp. nov., a chitinolytic strain isolated from estuarine lake sediment. International Journal of Systematic and Evolutionary Microbiology, 66, 3241–3248. https://doi.org/10.1099/ijsem.0.001176
  • Reasoner, D. J., & Geldreich, E. E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49(1), 1-7. https://doi.org/10.1128/aem.49.1.1-7.1985
  • Reimer, A., Landmann, G., & Kempe, S. (2009). Lake Van, eastern Anatolia, hydrochemistry and history. Aquatic Geochemistry, 15, 195-222. https://doi.org/10.1007/s10498-008-9049-9
  • Sağlam, M. T. (1978). Toprak kimyası tatbikat notları. Atatürk Üniversitesi.
  • Saitou, N., & Nei, M. (1987). The neighbour-joining method: A new method for constructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  • Saricaoglu, S., Isik, K., Veyisoglu, A., Saygin, H., Cetin, D., Guven, K., Spröer, C., Klenk, H.-P., & Sahin, N. (2014). Streptomyces burgazadensis sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_12), 4043–4048. https://doi.org/10.1099/ijs.0.065870-0
  • Sharma, P., & Thakur, D. (2020). Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Scientific Reports, 10, 4104. https://doi.org/10.1038/s41598-020-60968-6
  • Shirling, E. B., & Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology, 16(3), 313-340. https://doi.org/10.1099/00207713-16-3-313
  • Shivlata, L., & Satyanarayana, T. (2015). Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications. Frontiers in Microbiology, 6, 1014. https://doi.org/10.3389/fmicb.2015.01014
  • Silva, F. S. P., Souza, D. T., Zucchi, T. D., Pansa, C. C., de Figueiredo Vasconcellos, R. L., Crevelin, E. J., de Moraes, L. A. B., & Melo, I. S. (2016). Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766). Antonie Van Leeuwenhoek, 109, 1467–1474. https://doi.org/10.1007/s10482-016-0748-8
  • Sorokin, D. Y., Tourova, T. P., Panteleeva, A. N., & Muyzer, G. (2012). Desulfonatronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes. International Journal of Systematic and Evolutionary Microbiology, 62(Pt_9), 2107-2113. https://doi.org/10.1099/ijs.0.029777-0
  • Stackebrandt, E., & Ebers, J. (2006). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today, 33, 152–155.
  • Stackebrandt, E., & Goebel, B. (1994). Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 44(4), 846-849. https://doi.org/10.1099/00207713-44-4-846
  • Stackebrandt, E., Rainey, F. A., & Ward-Rainey, N. L. (1997). Proposal for a new hierarchic classification system. Actinobacteria classis nov. International Journal of Systematic Bacteriology, 47(2), 479–491. https://doi.org/10.1099/00207713-47-2-479
  • Sujarit, K., Kudo, T., Ohkuma, M., Pathom-Aree, W., & Lumyong, S. (2018). Streptomyces venetus sp. nov., an actinomycete with a blue aerial mycelium. International Journal of Systematic and Evolutionary Microbiology, 68(10), 3333–3339. https://doi.org/10.1099/ijsem.0.002995
  • Świecimska, M., Golińska, P., Nouioui, I., Wypij, M., Rai, M., Sangal, V., & Goodfellow, M. (2020). Streptomyces alkaliterrae sp. nov., isolated from an alkaline soil, and emended descriptions of Streptomyces alkaliphilus, Streptomyces calidiresistens and Streptomyces durbertensis. Systematic and Applied Microbiology, 43(6), 126153. https://doi.org/10.1016/j.syapm.2020.126153
  • Taber, W. A. (1960). Studies on Isaria cretacea: Morphogenesis of the synnema and endogenous nutrition. Canadian Journal of Microbiology, 6(1), 53-63. https://doi.org/10.1139/m60-008
  • Tan, G. Y. A., Ward, A. C., & Goodfellow, M. (2006). Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Systematic and Applied Microbiology, 29(7), 557-569. https://doi.org/10.1016/j.syapm.2006.01.007
  • Thampi, A., & Bhai, R. S. (2017). Rhizosphere actinobacteria for combating Phytophthora capsici and Sclerotium rolfsii, the major soil borne pathogens of black pepper (Piper nigrum L.). Biological Control, 109, 1-13. https://doi.org/10.1016/j.biocontrol.2017.03.006
  • Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G. F., Chater, K. F., & van Sinderen, D. (2007). Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiology and Molecular Biology Reviews, 71(3), 495-548. https://doi.org/10.1128/mmbr.00005-07
  • Veyisoglu, A., & Sahin, N. (2014). Streptomyces hoynatensis sp. nov., isolated from deep marine sediment. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_3), 819–826. https://doi.org/10.1099/ijs.0.055640-0
  • Waksman, S. A., & Henrici, A. T. (1943). The nomenclature and classification of the actinomycetes. Journal of Bacteriology, 46(4), 337–341. https://doi.org/10.1128/jb.46.4.337-341.1943
  • Wang, Z., Tian, J., Li, X., Gan, L., He, L., Chu, Y., Tian, Y. (2018). Streptomyces dioscori sp. nov., a novel endophytic actinobacterium isolated from Bulbil of Dioscorea bulbifera L. Current Microbiology, 75, 1384–1390. https://doi.org/10.1007/s00284-018-1534-9
  • Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M. H., Sneath, P. H. A., & Sackin, M. J. (1983). Numerical classification of Streptomyces and related genera. Journal of General Microbiology, 129(6), 1743-1813. https://doi.org/10.1099/00221287-129-6-1743
  • Yu, J., Zhang, L., Liu, Q., Qi, X., Ji, Y., & Kim, B. S. (2015). Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China. Asian Pacific Journal of Tropical Biomedicine, 5(7), 555-560. https://doi.org/10.1016/j.apjtb.2015.04.007
  • Yu, L., Lai, Q., Yi, Z., Zhang, L., Huang, Y., Gu, L., & Tang, X. (2013). Microbacterium sediminis sp. nov., a psychrotolerant, thermotolerant, halotolerant and alkalitolerant actinomycete isolated from deep-sea sediment. International Journal of Systematic Bacteriology, 63(Pt_1), 25-30. https://doi.org/10.1099/ijs.0.029652-0
  • Zarilla, K. A., & Perry, J. J. (1986). Deoxyribonucleic acid homology and other comparisons among obligately thermophilic hydrocarbonoclastic bacteria, with a proposal for Thermoleophilum minutum sp. nov. International Journal of Systematic Bacteriology, 36(1), 13-16. https://doi.org/10.1099/00207713-36-1-13
  • Zenova, G. M., Manucharova, N. A., & Zvyagintsev, D. G. (2011). Extremophilic and extremotolerant actinomycetes in different soil types. Eurasian Soil Science, 44, 417-436. https://doi.org/10.1134/S1064229311040132
  • Zhi, X. Y., Li, W. J., & Stackebrandt, E. (2009). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. International Journal of Systematic and Evolutionary Microbiology, 59(3), 589-608. https://doi.org/10.1099/ijs.0.65780-0
  • Zhu, C., Xu, B., Adpressa, D. A., Rudolf, J. D., & Loesgen, S. (2021). Discovery and biosynthesis of a structurally dynamic antibacterial diterpenoid. Angewandte Chemie International Edition, 60(25), 14163–14170. https://doi.org/10.1002/anie.202102453
There are 87 citations in total.

Details

Primary Language English
Subjects Conservation and Biodiversity
Journal Section Research Article
Authors

Aysel Veyisoğlu 0000-0002-1406-5513

Demet Tatar 0000-0002-9317-3263

Hünkar Avni Duyar 0000-0002-2560-5407

Ali Tokatlı 0000-0002-7559-8882

Project Number SHMYO-1901-23-001
Publication Date September 30, 2024
Submission Date July 26, 2024
Acceptance Date August 27, 2024
Published in Issue Year 2024 Volume: 13 Issue: 3

Cite

APA Veyisoğlu, A., Tatar, D., Duyar, H. A., Tokatlı, A. (2024). Isolation, Molecular Characterization and Determination of Antagonistic Properties of Alkalitolerant Streptomyces Members from Van Lake-Çarpanak Island Soil. Marine Science and Technology Bulletin, 13(3), 183-198. https://doi.org/10.33714/masteb.1522501
AMA Veyisoğlu A, Tatar D, Duyar HA, Tokatlı A. Isolation, Molecular Characterization and Determination of Antagonistic Properties of Alkalitolerant Streptomyces Members from Van Lake-Çarpanak Island Soil. Mar. Sci. Tech. Bull. September 2024;13(3):183-198. doi:10.33714/masteb.1522501
Chicago Veyisoğlu, Aysel, Demet Tatar, Hünkar Avni Duyar, and Ali Tokatlı. “Isolation, Molecular Characterization and Determination of Antagonistic Properties of Alkalitolerant Streptomyces Members from Van Lake-Çarpanak Island Soil”. Marine Science and Technology Bulletin 13, no. 3 (September 2024): 183-98. https://doi.org/10.33714/masteb.1522501.
EndNote Veyisoğlu A, Tatar D, Duyar HA, Tokatlı A (September 1, 2024) Isolation, Molecular Characterization and Determination of Antagonistic Properties of Alkalitolerant Streptomyces Members from Van Lake-Çarpanak Island Soil. Marine Science and Technology Bulletin 13 3 183–198.
IEEE A. Veyisoğlu, D. Tatar, H. A. Duyar, and A. Tokatlı, “Isolation, Molecular Characterization and Determination of Antagonistic Properties of Alkalitolerant Streptomyces Members from Van Lake-Çarpanak Island Soil”, Mar. Sci. Tech. Bull., vol. 13, no. 3, pp. 183–198, 2024, doi: 10.33714/masteb.1522501.
ISNAD Veyisoğlu, Aysel et al. “Isolation, Molecular Characterization and Determination of Antagonistic Properties of Alkalitolerant Streptomyces Members from Van Lake-Çarpanak Island Soil”. Marine Science and Technology Bulletin 13/3 (September 2024), 183-198. https://doi.org/10.33714/masteb.1522501.
JAMA Veyisoğlu A, Tatar D, Duyar HA, Tokatlı A. Isolation, Molecular Characterization and Determination of Antagonistic Properties of Alkalitolerant Streptomyces Members from Van Lake-Çarpanak Island Soil. Mar. Sci. Tech. Bull. 2024;13:183–198.
MLA Veyisoğlu, Aysel et al. “Isolation, Molecular Characterization and Determination of Antagonistic Properties of Alkalitolerant Streptomyces Members from Van Lake-Çarpanak Island Soil”. Marine Science and Technology Bulletin, vol. 13, no. 3, 2024, pp. 183-98, doi:10.33714/masteb.1522501.
Vancouver Veyisoğlu A, Tatar D, Duyar HA, Tokatlı A. Isolation, Molecular Characterization and Determination of Antagonistic Properties of Alkalitolerant Streptomyces Members from Van Lake-Çarpanak Island Soil. Mar. Sci. Tech. Bull. 2024;13(3):183-98.

27116