Research Article
BibTex RIS Cite
Year 2024, , 43 - 59, 14.04.2024
https://doi.org/10.36753/mathenot.1362706

Abstract

References

  • [1] Csiszár, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8, 85-108 (1963).
  • [2] Cerone, P., Dragomir, S. S., Österreicher, F.: Bounds on extended f-divergences for a variety of classes. Kybernetika (Prague). 40(6), 745-756 (2004) Preprint, RGMIA Res. Rep. Coll. 6(1), 5 (2003). http://rgmia.vu.edu.au/v6n1.html].
  • [3] Kafka, P., Österreicher, F., Vincze, I.: On powers of f-divergence defining a distance. Studia Scientiarum Mathematicarum Hungarica. 26, 415-422 (1991).
  • [4] Österreicher, F. Vajda, I.: A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics. 55 (3), 639-653 (2003).
  • [5] Liese, F., Vajda, I.: Convex Statistical Distances. Teubuer-Texte zur Mathematik, Band, Leipzig. 95 1987.
  • [6] Cerone, P., Dragomir, S. S.: Approximation of the integral mean divergence and f-divergence via mean results. Mathematical and Computer Modelling. 42(1-2), 207-219 (2005).
  • [7] Dragomir, S. S.: Some inequalities for (m;M)-convex mappings and applications for the Csiszár -divergence in information theory. Mathematical Journal of Ibaraki University. 33, 35-50 (2001).
  • [8] Dragomir, S. S.: Some inequalities for two Csiszár divergences and applications. Matematichki Bilten. 25, 73-90 (2001).
  • [9] Dragomir, S. S.: An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. Journal of Inequalities in Pure and Applied Mathematics. 3 (2), 31 (2002).
  • [10] Dragomir, S. S.: An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. Journal of Inequalities in Pure and Applied Mathematics. 3(3), 35 (2002).
  • [11] Dragomir, S. S.: An upper bound for the Csiszár f-divergence in terms of the variational distance and applications. Panamerican Mathematical Journal. 12(4), 43-54 (2002).
  • [12] Dragomir, S. S.: Upper and lower bounds for Csiszár f-divergence in terms of Hellinger discrimination and applications. Nonlinear Analysis Forum. 7(1), 1-13 (2002).
  • [13] Dragomir, S. S.: Bounds for f-divergences under likelihood ratio constraints. Applications of Mathematics. 48(3), 205-223 (2003).
  • [14] Dragomir, S. S.: New inequalities for Csiszár divergence and applications. Acta Mathematica Vietnamica. 28(2), 123-134 (2003).
  • [15] Dragomir, S. S.: A generalized f-divergence for probability vectors and applications. Panamerican Mathematical Journal. 13(4), 61-69 (2003).
  • [16] Dragomir, S. S.: Some inequalities for the Csiszár '-divergence when ' is an L-Lipschitzian function and applications. Italian Journal of Pure and Applied Mathematics. 15, 57-76 (2004).
  • [17] Dragomir, S. S.: A converse inequality for the Csiszár -divergence. Tamsui Oxford Journal of Mathematical Sciences. 20(1), 35-53 (2004).
  • [18] Dragomir, S. S.: Some general divergence measures for probability distributions. Acta Mathematica Hungarica. 109(4), 331-345 (2005).
  • [19] Dragomir, S. S.: Bounds for the normalized Jensen functional. Bulletin of the Australian Mathematical Society. 74(3), 471-478 (2006).
  • [20] Dragomir, S. S.: A refinement of Jensen’s inequality with applications for f-divergence measures. Taiwanese Journal of Mathematics. 14(1), 153-164 (2010).
  • [21] Dragomir, S. S.: A generalization of f-divergence measure to convex functions defined on linear spaces. Communications in Mathematical Analysis. 15(2), 1-14 (2013).

Some New $f$-Divergence Measures and Their Basic Properties

Year 2024, , 43 - 59, 14.04.2024
https://doi.org/10.36753/mathenot.1362706

Abstract

In this paper, we introduce some new $f$-divergence measures that we call $t$-\textit{asymmetric/symmetric divergence measure} and\textit{\ integral divergence measure, }establish their joint convexity and provide some inequalities that connect these $f$-divergences to the classical one introduced by Csiszar in 1963. Applications for the \textit{dichotomy class} of convex functions are provided as well.

References

  • [1] Csiszár, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8, 85-108 (1963).
  • [2] Cerone, P., Dragomir, S. S., Österreicher, F.: Bounds on extended f-divergences for a variety of classes. Kybernetika (Prague). 40(6), 745-756 (2004) Preprint, RGMIA Res. Rep. Coll. 6(1), 5 (2003). http://rgmia.vu.edu.au/v6n1.html].
  • [3] Kafka, P., Österreicher, F., Vincze, I.: On powers of f-divergence defining a distance. Studia Scientiarum Mathematicarum Hungarica. 26, 415-422 (1991).
  • [4] Österreicher, F. Vajda, I.: A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics. 55 (3), 639-653 (2003).
  • [5] Liese, F., Vajda, I.: Convex Statistical Distances. Teubuer-Texte zur Mathematik, Band, Leipzig. 95 1987.
  • [6] Cerone, P., Dragomir, S. S.: Approximation of the integral mean divergence and f-divergence via mean results. Mathematical and Computer Modelling. 42(1-2), 207-219 (2005).
  • [7] Dragomir, S. S.: Some inequalities for (m;M)-convex mappings and applications for the Csiszár -divergence in information theory. Mathematical Journal of Ibaraki University. 33, 35-50 (2001).
  • [8] Dragomir, S. S.: Some inequalities for two Csiszár divergences and applications. Matematichki Bilten. 25, 73-90 (2001).
  • [9] Dragomir, S. S.: An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. Journal of Inequalities in Pure and Applied Mathematics. 3 (2), 31 (2002).
  • [10] Dragomir, S. S.: An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. Journal of Inequalities in Pure and Applied Mathematics. 3(3), 35 (2002).
  • [11] Dragomir, S. S.: An upper bound for the Csiszár f-divergence in terms of the variational distance and applications. Panamerican Mathematical Journal. 12(4), 43-54 (2002).
  • [12] Dragomir, S. S.: Upper and lower bounds for Csiszár f-divergence in terms of Hellinger discrimination and applications. Nonlinear Analysis Forum. 7(1), 1-13 (2002).
  • [13] Dragomir, S. S.: Bounds for f-divergences under likelihood ratio constraints. Applications of Mathematics. 48(3), 205-223 (2003).
  • [14] Dragomir, S. S.: New inequalities for Csiszár divergence and applications. Acta Mathematica Vietnamica. 28(2), 123-134 (2003).
  • [15] Dragomir, S. S.: A generalized f-divergence for probability vectors and applications. Panamerican Mathematical Journal. 13(4), 61-69 (2003).
  • [16] Dragomir, S. S.: Some inequalities for the Csiszár '-divergence when ' is an L-Lipschitzian function and applications. Italian Journal of Pure and Applied Mathematics. 15, 57-76 (2004).
  • [17] Dragomir, S. S.: A converse inequality for the Csiszár -divergence. Tamsui Oxford Journal of Mathematical Sciences. 20(1), 35-53 (2004).
  • [18] Dragomir, S. S.: Some general divergence measures for probability distributions. Acta Mathematica Hungarica. 109(4), 331-345 (2005).
  • [19] Dragomir, S. S.: Bounds for the normalized Jensen functional. Bulletin of the Australian Mathematical Society. 74(3), 471-478 (2006).
  • [20] Dragomir, S. S.: A refinement of Jensen’s inequality with applications for f-divergence measures. Taiwanese Journal of Mathematics. 14(1), 153-164 (2010).
  • [21] Dragomir, S. S.: A generalization of f-divergence measure to convex functions defined on linear spaces. Communications in Mathematical Analysis. 15(2), 1-14 (2013).
There are 21 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods, Applied Mathematics (Other)
Journal Section Articles
Authors

Sever Dragomır 0000-0003-2902-6805

Early Pub Date January 21, 2024
Publication Date April 14, 2024
Submission Date September 19, 2023
Acceptance Date January 4, 2024
Published in Issue Year 2024

Cite

APA Dragomır, S. (2024). Some New $f$-Divergence Measures and Their Basic Properties. Mathematical Sciences and Applications E-Notes, 12(2), 43-59. https://doi.org/10.36753/mathenot.1362706
AMA Dragomır S. Some New $f$-Divergence Measures and Their Basic Properties. Math. Sci. Appl. E-Notes. April 2024;12(2):43-59. doi:10.36753/mathenot.1362706
Chicago Dragomır, Sever. “Some New $f$-Divergence Measures and Their Basic Properties”. Mathematical Sciences and Applications E-Notes 12, no. 2 (April 2024): 43-59. https://doi.org/10.36753/mathenot.1362706.
EndNote Dragomır S (April 1, 2024) Some New $f$-Divergence Measures and Their Basic Properties. Mathematical Sciences and Applications E-Notes 12 2 43–59.
IEEE S. Dragomır, “Some New $f$-Divergence Measures and Their Basic Properties”, Math. Sci. Appl. E-Notes, vol. 12, no. 2, pp. 43–59, 2024, doi: 10.36753/mathenot.1362706.
ISNAD Dragomır, Sever. “Some New $f$-Divergence Measures and Their Basic Properties”. Mathematical Sciences and Applications E-Notes 12/2 (April 2024), 43-59. https://doi.org/10.36753/mathenot.1362706.
JAMA Dragomır S. Some New $f$-Divergence Measures and Their Basic Properties. Math. Sci. Appl. E-Notes. 2024;12:43–59.
MLA Dragomır, Sever. “Some New $f$-Divergence Measures and Their Basic Properties”. Mathematical Sciences and Applications E-Notes, vol. 12, no. 2, 2024, pp. 43-59, doi:10.36753/mathenot.1362706.
Vancouver Dragomır S. Some New $f$-Divergence Measures and Their Basic Properties. Math. Sci. Appl. E-Notes. 2024;12(2):43-59.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.