Research Article
BibTex RIS Cite

Year 2024, Volume: 12 Issue: 2, 60 - 70, 14.04.2024
https://doi.org/10.36753/mathenot.1384280
https://izlik.org/JA39RB96PL

Abstract

References

  • [1] Khalil, R., Horani, M., Yousef,A., Sababheh, M.: A new definition of fractional derivative. Journal of Computational and Applied Mathematics. 264, 65-70 (2014).
  • [2] Abdeljawad, T.: On conformable fractional calculus. Journal of Computational and Applied Mathematics. 279, 57-66 (2015).
  • [3] Thabet, H., Kendre, S., Baleanu, D., Peters, J.: Exact analytical solutions for nonlinear systems of conformable partial differential equations via an analytical approach. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics. 84 (1), 109-120 (2022).
  • [4] Ibrahim, R. W., Baleanu, D., Jahangiri, J. M.: Conformable differential operators for meromorphically multivalent functions. Concrete Operators. 8 (1), 150-157 (2021).
  • [5] Au, V. V., Baleanu, D., Zhou, Y., Can, N. H.: On a problem for the nonlinear diffusion equation with conformable time derivative. Applicable Analysis. 101 (17), 6255-6279 (2022).
  • [6] Al-Jamel, A., Masaeed, M. A., Rabei, E. M., Baleanu, D.: The effect of deformation of special relativity by conformable derivative. Revista Mexicana de Fisica, 68 (5), 050705 (2022).
  • [7] Asjad, M. I., Ullah, N., Rehman, H. U., Baleanu, D: Optical solitons for conformable space-time fractional nonlinear model. Journal of Advances in Mathematics and Computer Science. 27 (1), 28-41 (2022).
  • [8] Masaeed, M. A., Rabei, E. M., Al-Jamel, A. A., Baleanu, D.: Extension of perturbation theory to quantum systems with conformable derivative. Modern Physics Letters A. 36 (32), 2150228 (2021).
  • [9] Yajima, T., Yamasaki, K.: Geometry of surfaces with Caputo fractional derivatives and applications to incompressible two-dimensional flows. Journal of Physics A: Mathematical and Theoretical. 45, 065201 (2012).
  • [10] Yajima, T., Oiwa, S., Yamasaki, K.: Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas. Fractional Calculus and Applied Analysis. 21 (6), 1493-1505 (2018).
  • [11] Lazopoulos, K. A., Lazopoulos, A. K.: Fractional differential geometry of curves and surfaces. Progress in Fractional Differentiation and Applications. 2 (3), 169-186 (2016).
  • [12] Aydın, M. E., Mihai, A., Yoku¸s, A.: Applications of fractional calculus in equiaffine geometry: plane curves with fractional order. Mathematical Methods in the Applied Sciences. 44 (17), 13659-13669 (2021).
  • [13] Gözütok, U., Çoban, H. A., Sağıroğlu, Y.: Frenet frame with respect to conformable derivative. Filomat 33 (6), 1541-1550 (2019).
  • [14] Has, A., Yılmaz, B.: Special fractional curve pairs with fractional calculus. International Electronic Journal of Geometry. 15 (1), 132-144 (2022).
  • [15] Has, A., Yılmaz, B., Akkurt, A., Yıldırım, H.: Conformable special curves in Euclidean 3-Space. Filomat. 36 (14), 4687-4698 (2022).
  • [16] Has, A., Yılmaz, B.: Effect of fractional analysis on magnetic curves. Revista Mexicana de Fisica. 68 (4), 1–15 (2022).
  • [17] Yılmaz, B., Has, A.: Obtaining fractional electromagnetic curves in optical fiber using fractional alternative moving frame. Optik - International Journal for Light and Electron Optics. 260 (8), 169067 (2022).
  • [18] Yılmaz, B: A new type electromagnetic curves in optical fiber and rotation of the polarization plane using fractional calculus. Optik - International Journal for Light and Electron Optics. 247 (30), 168026 (2021).
  • [19] Aydın, M. E., Bekta¸s, M., Öğrenmiş, A. O., Yokus, A.: Differential geometry of curves in Euclidean 3-space with fractional order. International Electronic Journal of Geometry. 14 (1), 132-144 (2021).
  • [20] Aydın, M. E., Kaya, S.: Fractional equiaffine curvatures of curves in 3-dimensional affine space. International Journal of Maps in Mathematics. 6 (1), 67-82 (2023).
  • [21] Ögrenmiş, M.: Geometry of curves with fractional derivatives in Lorentz plane. Journal of New Theory. 38, 88-98 (2022).
  • [22] Gözütok, N. Y., Gözütok, U.: Multivariable conformable fractional calculus. Filomat. 32 (2), 45-53 (2018).
  • [23] Has, A., Yılmaz, B.: Measurement and calculation on conformable surfaces. Mediterranean Journal of Mathematics. 20 (5), 274 (2023).
  • [24] Has, A., Yılmaz, B.: $C_\alpha-$curves and their $C_\alpha-$frame in fractional differential geometry. In Press (2023).

On the Geometric and Physical Properties of Conformable Derivative

Year 2024, Volume: 12 Issue: 2, 60 - 70, 14.04.2024
https://doi.org/10.36753/mathenot.1384280
https://izlik.org/JA39RB96PL

Abstract

In this article, we explore the advantages geometric and physical implications of the conformable derivative. One of the key benefits of the conformable derivative is its ability to approximate the tangent at points where the classical tangent is not readily available. By employing conformable derivatives, alternative tangents can be created to overcome this limitation. Thanks to these alternative (conformable) tangents, physical interpretation can be made with alternative velocity vectors. Furthermore, the conformable derivative proves to be valuable in situations where the tangent plane cannot be defined. It enables the creation of alternative tangent planes, offering a solution in cases where the traditional approach falls short. Geometrically speaking, the conformable derivative carries significant meaning. It provides insights into the local behavior of a function and its relationship with nearby points. By understanding the conformable derivative, we gain a deeper understanding of how a function evolves and changes within its domain. A several examples are presented in the article to better understand the article and visualize the concepts discussed. These examples are accompanied by visual representations generated using the Mathematica program, aiding in a clearer understanding of the proposed ideas. By combining theoretical explanations, practical examples, and visualizations, this article aims to provide a comprehensive exploration of the advantages and geometric and physical implications of the conformable derivative.

References

  • [1] Khalil, R., Horani, M., Yousef,A., Sababheh, M.: A new definition of fractional derivative. Journal of Computational and Applied Mathematics. 264, 65-70 (2014).
  • [2] Abdeljawad, T.: On conformable fractional calculus. Journal of Computational and Applied Mathematics. 279, 57-66 (2015).
  • [3] Thabet, H., Kendre, S., Baleanu, D., Peters, J.: Exact analytical solutions for nonlinear systems of conformable partial differential equations via an analytical approach. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics. 84 (1), 109-120 (2022).
  • [4] Ibrahim, R. W., Baleanu, D., Jahangiri, J. M.: Conformable differential operators for meromorphically multivalent functions. Concrete Operators. 8 (1), 150-157 (2021).
  • [5] Au, V. V., Baleanu, D., Zhou, Y., Can, N. H.: On a problem for the nonlinear diffusion equation with conformable time derivative. Applicable Analysis. 101 (17), 6255-6279 (2022).
  • [6] Al-Jamel, A., Masaeed, M. A., Rabei, E. M., Baleanu, D.: The effect of deformation of special relativity by conformable derivative. Revista Mexicana de Fisica, 68 (5), 050705 (2022).
  • [7] Asjad, M. I., Ullah, N., Rehman, H. U., Baleanu, D: Optical solitons for conformable space-time fractional nonlinear model. Journal of Advances in Mathematics and Computer Science. 27 (1), 28-41 (2022).
  • [8] Masaeed, M. A., Rabei, E. M., Al-Jamel, A. A., Baleanu, D.: Extension of perturbation theory to quantum systems with conformable derivative. Modern Physics Letters A. 36 (32), 2150228 (2021).
  • [9] Yajima, T., Yamasaki, K.: Geometry of surfaces with Caputo fractional derivatives and applications to incompressible two-dimensional flows. Journal of Physics A: Mathematical and Theoretical. 45, 065201 (2012).
  • [10] Yajima, T., Oiwa, S., Yamasaki, K.: Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas. Fractional Calculus and Applied Analysis. 21 (6), 1493-1505 (2018).
  • [11] Lazopoulos, K. A., Lazopoulos, A. K.: Fractional differential geometry of curves and surfaces. Progress in Fractional Differentiation and Applications. 2 (3), 169-186 (2016).
  • [12] Aydın, M. E., Mihai, A., Yoku¸s, A.: Applications of fractional calculus in equiaffine geometry: plane curves with fractional order. Mathematical Methods in the Applied Sciences. 44 (17), 13659-13669 (2021).
  • [13] Gözütok, U., Çoban, H. A., Sağıroğlu, Y.: Frenet frame with respect to conformable derivative. Filomat 33 (6), 1541-1550 (2019).
  • [14] Has, A., Yılmaz, B.: Special fractional curve pairs with fractional calculus. International Electronic Journal of Geometry. 15 (1), 132-144 (2022).
  • [15] Has, A., Yılmaz, B., Akkurt, A., Yıldırım, H.: Conformable special curves in Euclidean 3-Space. Filomat. 36 (14), 4687-4698 (2022).
  • [16] Has, A., Yılmaz, B.: Effect of fractional analysis on magnetic curves. Revista Mexicana de Fisica. 68 (4), 1–15 (2022).
  • [17] Yılmaz, B., Has, A.: Obtaining fractional electromagnetic curves in optical fiber using fractional alternative moving frame. Optik - International Journal for Light and Electron Optics. 260 (8), 169067 (2022).
  • [18] Yılmaz, B: A new type electromagnetic curves in optical fiber and rotation of the polarization plane using fractional calculus. Optik - International Journal for Light and Electron Optics. 247 (30), 168026 (2021).
  • [19] Aydın, M. E., Bekta¸s, M., Öğrenmiş, A. O., Yokus, A.: Differential geometry of curves in Euclidean 3-space with fractional order. International Electronic Journal of Geometry. 14 (1), 132-144 (2021).
  • [20] Aydın, M. E., Kaya, S.: Fractional equiaffine curvatures of curves in 3-dimensional affine space. International Journal of Maps in Mathematics. 6 (1), 67-82 (2023).
  • [21] Ögrenmiş, M.: Geometry of curves with fractional derivatives in Lorentz plane. Journal of New Theory. 38, 88-98 (2022).
  • [22] Gözütok, N. Y., Gözütok, U.: Multivariable conformable fractional calculus. Filomat. 32 (2), 45-53 (2018).
  • [23] Has, A., Yılmaz, B.: Measurement and calculation on conformable surfaces. Mediterranean Journal of Mathematics. 20 (5), 274 (2023).
  • [24] Has, A., Yılmaz, B.: $C_\alpha-$curves and their $C_\alpha-$frame in fractional differential geometry. In Press (2023).
There are 24 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Aykut Has 0000-0003-0658-9365

Beyhan Yılmaz 0000-0002-5091-3487

Dumitru Baleanu 0000-0002-0286-7244

Submission Date November 1, 2023
Acceptance Date December 29, 2023
Early Pub Date January 24, 2024
Publication Date April 14, 2024
DOI https://doi.org/10.36753/mathenot.1384280
IZ https://izlik.org/JA39RB96PL
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA Has, A., Yılmaz, B., & Baleanu, D. (2024). On the Geometric and Physical Properties of Conformable Derivative. Mathematical Sciences and Applications E-Notes, 12(2), 60-70. https://doi.org/10.36753/mathenot.1384280
AMA 1.Has A, Yılmaz B, Baleanu D. On the Geometric and Physical Properties of Conformable Derivative. Math. Sci. Appl. E-Notes. 2024;12(2):60-70. doi:10.36753/mathenot.1384280
Chicago Has, Aykut, Beyhan Yılmaz, and Dumitru Baleanu. 2024. “On the Geometric and Physical Properties of Conformable Derivative”. Mathematical Sciences and Applications E-Notes 12 (2): 60-70. https://doi.org/10.36753/mathenot.1384280.
EndNote Has A, Yılmaz B, Baleanu D (April 1, 2024) On the Geometric and Physical Properties of Conformable Derivative. Mathematical Sciences and Applications E-Notes 12 2 60–70.
IEEE [1]A. Has, B. Yılmaz, and D. Baleanu, “On the Geometric and Physical Properties of Conformable Derivative”, Math. Sci. Appl. E-Notes, vol. 12, no. 2, pp. 60–70, Apr. 2024, doi: 10.36753/mathenot.1384280.
ISNAD Has, Aykut - Yılmaz, Beyhan - Baleanu, Dumitru. “On the Geometric and Physical Properties of Conformable Derivative”. Mathematical Sciences and Applications E-Notes 12/2 (April 1, 2024): 60-70. https://doi.org/10.36753/mathenot.1384280.
JAMA 1.Has A, Yılmaz B, Baleanu D. On the Geometric and Physical Properties of Conformable Derivative. Math. Sci. Appl. E-Notes. 2024;12:60–70.
MLA Has, Aykut, et al. “On the Geometric and Physical Properties of Conformable Derivative”. Mathematical Sciences and Applications E-Notes, vol. 12, no. 2, Apr. 2024, pp. 60-70, doi:10.36753/mathenot.1384280.
Vancouver 1.Has A, Yılmaz B, Baleanu D. On the Geometric and Physical Properties of Conformable Derivative. Math. Sci. Appl. E-Notes [Internet]. 2024 Apr. 1;12(2):60-7. Available from: https://izlik.org/JA39RB96PL

Cited By





















INDEXING & ABSTRACTING & ARCHIVING

34771           




20477   The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.