Research Article
BibTex RIS Cite

Higher-Order Mersenne Numbers: New Sequences, Algebraic Properties, and Binomial Transforms

Year 2025, Volume: 13 Issue: 4, 209 - 223, 15.12.2025
https://doi.org/10.36753/mathenot.1797254

Abstract

This article introduces and investigates a new integer sequence, termed the higher-order Mersenne sequence, defined in analogy with higher-order Fibonacci numbers and closely related to classical Mersenne numbers. We establish a range of fundamental algebraic properties of this sequence, including its Binet-type formula, Catalan’s identity, d’Ocagne’s identity, generating function, and several finite and binomial summation identities. Further, we explore its connections with both Mersenne and Jacobsthal numbers. The study also examines the sequence obtained via the binomial transform of higher-order Mersenne numbers, deriving its recurrence relation and algebraic characteristics. In addition, matrix generators and a tridiagonal matrix representation are developed to enrich the structural understanding of these numbers.

References

  • [1] Randić, M., Morales, D.A., Araujo, O.: Higher-order Fibonacci numbers. Journal of Mathematical Chemistry. 20, 79–94 (1996).
  • [2] Kizilateş, C., Kone, T.: On higher order Fibonacci quaternions. The Journal of Analysis. 29(4), 1071–1082 (2021).
  • [3] Cook, C. K., Bacon, M. R.: Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations. Annales mathematicae et informaticae, 27–39 (2013).
  • [4] Uysal, M., Özkan, E.: Higher-order Jacobsthal–Lucas quaternions. Axioms. 11(12), 671 (2022).
  • [5] Özkan, E., Uysal, M.: On quaternions with higher order Jacobsthal numbers components. Gazi University Journal of Science. 36(1), 336-347 (2023).
  • [6] Özimamoglu, H.: On hyper complex numbers with higher order Pell numbers components. The Journal of Analysis. 31, 2443–2457 (2023).
  • [7] Prasad, K., Indubala, Kumari, M.: Higher order balancing numbers: new sequences, recurrence relations, generating functions and identities. Bulletin of the Karaganda University, Mathematics Series. 121(1) (2026).
  • [8] Chelgham, M., Boussayoud, A.: On the k-Mersenne–Lucas numbers. Notes on Number Theory and Discrete Mathematics. 27(1), 7–13 (2021).
  • [9] Kumari, M., Prasad, K., Tanti, J.: On the generalization of Mersenne and Gaussian Mersenne polynomials. The Journal of Analysis. 32, 931–947 (2024).
  • [10] Dasdemir, A., Bilgici, G.: Gaussian Mersenne numbers and Mersenne quaternions. Notes on Number Theory and Discrete Mathematics. 25(3), 87–96 (2019).
  • [11] Eser, E., Kuloglu, B., Ozcan, E.: On the Mersenne and Mersenne-Lucas hybrinomial quaternions. Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science. 129–144 (2023).
  • [12] Uysal, M., Kumari, M., Kuloglu, B., Prasad, K., Ozkan, E.: On the hyperbolic k-Mersenne and k-Mersenne-Lucas octonions. Kragujevac Journal of Mathematics. 49(05), 765–779 (2025).
  • [13] da Fonseca, C. M., Saraiva, P.: Some remarks on bivariate Mersenne-Lucas polynomials. Chaos, Solitons & Fractals. 200, 116901 (2025).
  • [14] Brod, D., Szynal-Liana, A.: On Mersenne numbers and their bihyperbolic generalizations. Annales Mathematicae Silesianae. 39(1), 130–142 (2025).
  • [15] Morales, G.: Unrestricted Lichtenberg hybrid sequences. Mathematical Sciences and Applications E-Notes. 13(3), 156–164 (2025).
  • [16] Costa, E. A., Catarino, P. M. M. C.: The first study of Mersenne–Leonardo sequence. Communications in Advanced Mathematical Sciences. 8(1), 11–23 (2025).
  • [17] Prasad, K., Kumari, M.: Some new properties of Frank matrices with entries Mersenne numbers. National Academy Science Letters. 1–7 (2024).
  • [18] Soykan, Y.: A study on generalized Mersenne numbers. Journal of Progressive Research in Mathematics. 18(3), 90–108 (2021).
  • [19] Kızılırmak, G.Ö., Taşçı, D.: On the bi-periodic Mersenne sequence. Fundamental Journal of Mathematics and Applications. 5(3), 160–167 (2022).
  • [20] Soykan, Y.: On generalized p-Mersenne numbers. Earthline Journal of Mathematical Sciences. 8(1), 83–120 (2022).
  • [21] Taşçı, D., Sevgi, E.: Some properties between Mersenne, Jacobsthal and Jacobsthal-Lucas hybrid numbers. Chaos, Solitons & Fractals. 146, 110862 (2021).
  • [22] Santos, D.C., Costa, E.A., Catarino, P.M.: On Gersenne sequence: A study of one family in the Horadam-type sequence. Axioms. 14(3), 203 (2025).
  • [23] Kumari, M., Prasad, K., Mohanty, R., Mahato, H.: On new sequences of p-binomial and Catalan transforms of the k-Mersenne numbers and associated generating functions. Universal Journal of Mathematics and Applications. 8(2), 71–80 (2025).
  • [24] Catarino, P., Campos, H., Vasco, P.: On the Mersenne sequence. Annales Mathematics et Informaticae. 46, 37–53 (2016).
  • [25] Kumari, M., Prasad, K., Mohanta, R.: Algebra of quaternions and octonions involving higher order Mersenne numbers. Proceedings of the Indian National Science Academy. 91, 333–342 (2025).
  • [26] Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A new public-key cryptosystem via Mersenne numbers. Advances in Cryptology–CRYPTO 2018: 38th Annual International Cryptology Conference, 459–482 (2018).
  • [27] Barry, P.: A Catalan transform and related transformations on integer sequences. Journal of Integer Sequences. 8 (2005).
  • [28] Prodinger, H.: Some information about the binomial transform. Fibonacci Quarterly. 32(05), 412 (1993).
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions, Complex Systems in Mathematics, Approximation Theory and Asymptotic Methods, Applied Mathematics (Other)
Journal Section Research Article
Authors

Kalika Prasad 0000-0002-3653-5854

Munesh Kumari 0000-0002-6541-0284

Rabiranjan Mohanta 0009-0002-9197-3539

Hrishikesh Mahato 0000-0002-3769-0653

Submission Date October 5, 2025
Acceptance Date November 30, 2025
Early Pub Date December 9, 2025
Publication Date December 15, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Prasad, K., Kumari, M., Mohanta, R., Mahato, H. (2025). Higher-Order Mersenne Numbers: New Sequences, Algebraic Properties, and Binomial Transforms. Mathematical Sciences and Applications E-Notes, 13(4), 209-223. https://doi.org/10.36753/mathenot.1797254
AMA Prasad K, Kumari M, Mohanta R, Mahato H. Higher-Order Mersenne Numbers: New Sequences, Algebraic Properties, and Binomial Transforms. Math. Sci. Appl. E-Notes. December 2025;13(4):209-223. doi:10.36753/mathenot.1797254
Chicago Prasad, Kalika, Munesh Kumari, Rabiranjan Mohanta, and Hrishikesh Mahato. “Higher-Order Mersenne Numbers: New Sequences, Algebraic Properties, and Binomial Transforms”. Mathematical Sciences and Applications E-Notes 13, no. 4 (December 2025): 209-23. https://doi.org/10.36753/mathenot.1797254.
EndNote Prasad K, Kumari M, Mohanta R, Mahato H (December 1, 2025) Higher-Order Mersenne Numbers: New Sequences, Algebraic Properties, and Binomial Transforms. Mathematical Sciences and Applications E-Notes 13 4 209–223.
IEEE K. Prasad, M. Kumari, R. Mohanta, and H. Mahato, “Higher-Order Mersenne Numbers: New Sequences, Algebraic Properties, and Binomial Transforms”, Math. Sci. Appl. E-Notes, vol. 13, no. 4, pp. 209–223, 2025, doi: 10.36753/mathenot.1797254.
ISNAD Prasad, Kalika et al. “Higher-Order Mersenne Numbers: New Sequences, Algebraic Properties, and Binomial Transforms”. Mathematical Sciences and Applications E-Notes 13/4 (December2025), 209-223. https://doi.org/10.36753/mathenot.1797254.
JAMA Prasad K, Kumari M, Mohanta R, Mahato H. Higher-Order Mersenne Numbers: New Sequences, Algebraic Properties, and Binomial Transforms. Math. Sci. Appl. E-Notes. 2025;13:209–223.
MLA Prasad, Kalika et al. “Higher-Order Mersenne Numbers: New Sequences, Algebraic Properties, and Binomial Transforms”. Mathematical Sciences and Applications E-Notes, vol. 13, no. 4, 2025, pp. 209-23, doi:10.36753/mathenot.1797254.
Vancouver Prasad K, Kumari M, Mohanta R, Mahato H. Higher-Order Mersenne Numbers: New Sequences, Algebraic Properties, and Binomial Transforms. Math. Sci. Appl. E-Notes. 2025;13(4):209-23.

INDEXING & ABSTRACTING & ARCHIVING

34771           




20477   The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.