Research Article
BibTex RIS Cite

Hybrid Method for Fractional Partial Differential Equations: Analytical Solution of Linear and Nonlinear Systems

Year 2025, Volume: 13 Issue: 4, 224 - 239, 15.12.2025
https://doi.org/10.36753/mathenot.1810214

Abstract

In this study, we obtain analytical and semi-analytical solutions of systems of fractional partial differential equations using a hybrid approach we call the Laplace-Daftardar-Gejji Method (LDGM). The Laplace transform is used to simplify the nonlinear system with fractional derivatives. The solution components are then obtained using the Daftardar-Gejji iterative technique. In a final step, to demonstrate the applicability and effectiveness of the method, analytical solutions of two linear and nonlinear systems modeled with Caputo fractional derivatives are obtained. It is observed that the analytical solutions approach the classical solutions as the order of the fractional derivative, $\alpha$, approaches $1$. This observation is supported by tables and graphs. In summary, since analytical solutions are obtained using the proposed method, LDGM is an effective and useful tool for solving nonlinear systems involving Caputo fractional differentials.

References

  • [1] Sabatier, J., Agrawal, O. P., Machado, J. A. T.: Advances in Fractional Calculus : Theoretical Developments and Applications in Physics and Engineering. Dordrecht: Springer (2007).
  • [2] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. San Diego, CA: Academic Press (1999).
  • [3] Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. London, U.K.: Imperial College Press (2010).
  • [4] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. Amsterdam, The Netherlands: Elsevier (2006).
  • [5] Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Berlin, Germany: Springer (2010).
  • [6] Liu, L., Dong, Q., Li, G.: Exact solutions of fractional oscillation systems with pure. Fractional Calculus and Applied Analysis. 25, 1688–1712 (2022).
  • [7] Akinlar, M. A., Inc, M., Gómez-Aguilar, J. F., Boutarfa, B.: Solutions of a disease model with fractional white noise. Chaos, Solitons & Fractals. 137, 2020 (2020).
  • [8] Cernea, A.: Existence of solutions for some coupled systems of fractional differential inclusions. Mathematics. 8(5), 2020 (2020).
  • [9] Qayyum, M., Ahmad, E., Riaz, M. B., Awrejcewicz, J., Saeed, S. T.: New soliton solutions of time-fractional Korteweg–de Vries systems. Universe. 8(9), 2022 (2022).
  • [10] Inc, M., Akinlar, M. A., Tchier, F., Bal, C., Bousbahi, F., Tawfiq, F. O., Weber, G.W.: Solutions of fractional-stochastic Bao’s system. Alexandria Engineering Journal. 59(6), 4997–5006 (2020).
  • [11] Boulares, H., Moumen, A., Fernane, K., Alzabut, J., Saber, H., Alraqad, T., Benaissa, M.: On solutions of fractional integrodifferential systems involving Ψ-Caputo derivative and Ψ-Riemann–Liouville fractional integral. Mathematics. 11(6), 2023 (2023).
  • [12] Erman, S.: Undetermined coefficients method for sequential fractional differential equations. Kocaeli Journal of Science and Engineering. 6(1), 44–50 (2023).
  • [13] Erman, S., Demir, A.: On the construction and stability analysis of the solution of linear fractional differential equation. Applied Mathematics and Computation. 386, (2020).
  • [14] Bayrak, M. A., Demir, A., Büyük, A.: A novel analytical method for time fractional convection-diffusion equation through clique polynomials of the cocktail party graph. Journal of Applied Analysis & Computation. 15(1), 564–573 (2025).
  • [15] Demir, A., Bayrak, M. A., Bulut, A., Ozbilge, E., Cetinkaya, S.: On new aspects of Chebyshev polynomials for space-time fractional diffusion process. Applied Mathematics and Nonlinear Sciences. 8(2), 1051–1062 (2023).
  • [16] Bayrak, M. A., Demir, A.: On the inverse problem of time-dependent coefficient in a time fractional diffusion problem by newly defined Monic Laquerre wavelets. Journal of Computational and Nonlinear Dynamics. 18(11), (2023).
  • [17] Shah, N. A., Dassios, I., El-Zahar, E. R., Chung, J. D.: An efficient technique of fractional-order physical models involving ρ-Laplace transform. Mathematics. 10(5), 2022 (2022).
  • [18] Alderremy, A. A., Shah, R., Iqbal, N., Aly, S., Nonlaopon, K.: Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series. Symmetry. 14(9), 2022 (2022).
  • [19] Qin, Y., Khan, A., Ali, I., Qurashi, M. A., Khan, H., Shah, R., Baleanu, D.: An efficient analytical approach for the solution of certain fractional-order dynamical systems. Energies. 13(11), 2020 (2020).
  • [20] Cetinkaya, S., Demir, A.: A new approach for the fractional Rosenau–Hyman problem by ARA transform. Mathematical Methods in the Applied Sciences. 48(11), 10970–10977 (2025).
  • [21] Cetinkaya, S., Demir, A.: On the solution of time fractional initial value problem by a new method with ARA transform. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology. 44(2), 2693–2701 (2022).
  • [22] Cetinkaya, S., Demir, A., Sevindir Kodal, H.: Solution of space-time-fractional problem by Shehu variational iteration method. Advances in Mathematical Physics. 2021, 2021 (2021).
  • [23] Kodal Sevindir, H., Cetinkaya, S., Demir, A.: On effects of a new method for fractional initial value problems. Advances in Mathematical Physics. 2021, 2021 (2021).
  • [24] Cetinkaya, S., Demir, A.: On the solution of Bratu’s initial value problem in the Liouville-Caputo sense by ARA transform and decomposition method. Comptes Rendus de L’Acade’mie Bulgare des Sciences. 74(12), 1729–1738 (2021).
  • [25] Cetinkaya, S.: On a fractional inverse source problem with mixed boundary conditions through a novel method. Electronic Research Archive. 33(9), 5719–5747 (2025).
  • [26] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent—II. Geophysical Journal International. 13(5), 529–539 (1967).
  • [27] Wiman, A.: Uber de fundamental Satz in der theorie der funktionen. Acta Mathematica. 29(1), 191–201 (1905).
  • [28] Gorenflo, R., Kilbas, A. A., Mainardi, F., Rogosin, S. V.: Mittag-Leffler Functions, Related Topics and Applications. Berlin, Heidelberg: Springer (2014).
  • [29] Laplace, P. S.: Théorie Analytique des Probabilités. Paris, France: Courcier (1820).
  • [30] Kreyszig, E.: Advanced Engineering Mathematics. Hoboken, NJ, USA: JohnWiley & Sons (2011).
  • [31] Jafari, H., Seifi, S.: Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation. 14(5), 1962–1969 (2009).
  • [32] Wazwaz, A. M.: The variational iteration method for solving linear and nonlinear systems of PDEs. Computers & Mathematics with Applications. 54(7-8), 895–902 (2007).
  • [33] Liu, Y.: Variational homotopy perturbation method for solving fractional initial boundary value problems. Abstract and Applied Analysis. 2012, 2012 (2012).
There are 33 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Research Article
Authors

Süleyman Çetinkaya 0000-0002-8214-5099

Submission Date October 24, 2025
Acceptance Date December 14, 2025
Early Pub Date December 15, 2025
Publication Date December 15, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Çetinkaya, S. (2025). Hybrid Method for Fractional Partial Differential Equations: Analytical Solution of Linear and Nonlinear Systems. Mathematical Sciences and Applications E-Notes, 13(4), 224-239. https://doi.org/10.36753/mathenot.1810214
AMA 1.Çetinkaya S. Hybrid Method for Fractional Partial Differential Equations: Analytical Solution of Linear and Nonlinear Systems. Math. Sci. Appl. E-Notes. 2025;13(4):224-239. doi:10.36753/mathenot.1810214
Chicago Çetinkaya, Süleyman. 2025. “Hybrid Method for Fractional Partial Differential Equations: Analytical Solution of Linear and Nonlinear Systems”. Mathematical Sciences and Applications E-Notes 13 (4): 224-39. https://doi.org/10.36753/mathenot.1810214.
EndNote Çetinkaya S (December 1, 2025) Hybrid Method for Fractional Partial Differential Equations: Analytical Solution of Linear and Nonlinear Systems. Mathematical Sciences and Applications E-Notes 13 4 224–239.
IEEE [1]S. Çetinkaya, “Hybrid Method for Fractional Partial Differential Equations: Analytical Solution of Linear and Nonlinear Systems”, Math. Sci. Appl. E-Notes, vol. 13, no. 4, pp. 224–239, Dec. 2025, doi: 10.36753/mathenot.1810214.
ISNAD Çetinkaya, Süleyman. “Hybrid Method for Fractional Partial Differential Equations: Analytical Solution of Linear and Nonlinear Systems”. Mathematical Sciences and Applications E-Notes 13/4 (December 1, 2025): 224-239. https://doi.org/10.36753/mathenot.1810214.
JAMA 1.Çetinkaya S. Hybrid Method for Fractional Partial Differential Equations: Analytical Solution of Linear and Nonlinear Systems. Math. Sci. Appl. E-Notes. 2025;13:224–239.
MLA Çetinkaya, Süleyman. “Hybrid Method for Fractional Partial Differential Equations: Analytical Solution of Linear and Nonlinear Systems”. Mathematical Sciences and Applications E-Notes, vol. 13, no. 4, Dec. 2025, pp. 224-39, doi:10.36753/mathenot.1810214.
Vancouver 1.Çetinkaya S. Hybrid Method for Fractional Partial Differential Equations: Analytical Solution of Linear and Nonlinear Systems. Math. Sci. Appl. E-Notes [Internet]. 2025 Dec. 1;13(4):224-39. Available from: https://izlik.org/JA58RE54YF

INDEXING & ABSTRACTING & ARCHIVING

34771           




20477   The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.