[1] Berberler, Z.N. and Berberler, M.E., Independence saturation in complementary product types of graphs, CBU
J. of Sci., 13 (2017), no. 2, 325-331.
[2] Bomze, I., Budinich, M., Pardalos, P. and Pelillo, M.,“The maximum clique problem,” in Du, D. and Pardalos, P.
(eds), Handbook of Combinatorial Optimization, Supplement Volume A, Kluwer Academic Press, 1999.
[3] Bondy, J. A. and Murty, U. S. R., Graph theory with applications, American Elsevier Publishing Co., Inc., New
York, 1976.
[4] Buckley, F. and Harary, F., Distance in Graphs, Addison-Wesley Publishing Company Advanced Book Program,
Redwood City, CA, 1990.
[5] Chartrand, G. and Lesniak, L., Graphs and Digraphs:, Fourth Edition, Chapman and Hall, London, 2005.
[6] Haynes, T. W., Henning, M. A., Slater, P. J. and Van Der Merwe, L. C., The complementary product of two
graphs, Bull. Instit. Combin. Appl., 51 (2007), 21-30.
[7] Korshunov, A. D., Coefficient of internal stability of graphs, Cybernetics, 10(1974), no. 1, 19-33.
[8] Meena, N., Subramanian, A. and Swaminathan, V., Strong efficient domination and strong independent
saturation number of graphs, International Journal of Mathematics and Soft Computing, 3 (2013), no. 2, 41-48.
[9] Sampathkumar, E. and Pushpa Latha, L., Strong weak domination and domination balance in a graph, Discrete
Math., 161 (1996), 235-242.
[10] West, D. B., Introduction to Graph Theory, Prentice Hall, NJ, 2001.
Add To My Library
Strong Independent Saturation in Complementary Prisms
Year 2018,
Volume: 6 Issue: 1, 99 - 105, 27.04.2018
[1] Berberler, Z.N. and Berberler, M.E., Independence saturation in complementary product types of graphs, CBU
J. of Sci., 13 (2017), no. 2, 325-331.
[2] Bomze, I., Budinich, M., Pardalos, P. and Pelillo, M.,“The maximum clique problem,” in Du, D. and Pardalos, P.
(eds), Handbook of Combinatorial Optimization, Supplement Volume A, Kluwer Academic Press, 1999.
[3] Bondy, J. A. and Murty, U. S. R., Graph theory with applications, American Elsevier Publishing Co., Inc., New
York, 1976.
[4] Buckley, F. and Harary, F., Distance in Graphs, Addison-Wesley Publishing Company Advanced Book Program,
Redwood City, CA, 1990.
[5] Chartrand, G. and Lesniak, L., Graphs and Digraphs:, Fourth Edition, Chapman and Hall, London, 2005.
[6] Haynes, T. W., Henning, M. A., Slater, P. J. and Van Der Merwe, L. C., The complementary product of two
graphs, Bull. Instit. Combin. Appl., 51 (2007), 21-30.
[7] Korshunov, A. D., Coefficient of internal stability of graphs, Cybernetics, 10(1974), no. 1, 19-33.
[8] Meena, N., Subramanian, A. and Swaminathan, V., Strong efficient domination and strong independent
saturation number of graphs, International Journal of Mathematics and Soft Computing, 3 (2013), no. 2, 41-48.
[9] Sampathkumar, E. and Pushpa Latha, L., Strong weak domination and domination balance in a graph, Discrete
Math., 161 (1996), 235-242.
[10] West, D. B., Introduction to Graph Theory, Prentice Hall, NJ, 2001.
Berberler, Z. N. (2018). Strong Independent Saturation in Complementary Prisms. Mathematical Sciences and Applications E-Notes, 6(1), 99-105. https://doi.org/10.36753/mathenot.421776
AMA
Berberler ZN. Strong Independent Saturation in Complementary Prisms. Math. Sci. Appl. E-Notes. April 2018;6(1):99-105. doi:10.36753/mathenot.421776