Year 2020,
, 29 - 45, 20.03.2020
Yusuf Uçar
,
Murat Yağmurlu
,
İhsan Çelikkaya
References
- H. Bateman, Some recent researches on the motion of fluids, Monthly Weather Rev. 43 (1915) 163-170.
- A.J. Mohamad Jawad, S. Kumar and A. Biswas, Soliton solutions of a few nonlinear wave equations in engineering sciences, Sharif University of Technology Scientica Iranica, Transactions D (2014) 21(3), 861-869.
- A. Neirameh and M. Eslami, An analytical method for finding exact solitary wave solutions of the coupled (2+1)-dimensional Painleve Burgers equation, Scientia Iranica B (2017) 24(2), 715-726.
- S. Haq, A. Hussain, M. Uddin, On the numerical solution of nonlinear Burgers'-type equations using meshless method of lines, Applied Mathematics and Computation 218 (2012) 6280-6290. doi:10.1016/j.amc.2011.11.106
- A.H.A. Ali, G.A. Gardner, L.R.T. Gardner, A collocation solution for Burgers' equation using cubic B-spline finite elements, Comput. Methods Appl. Mech.Eng. 100 (1992) 325-337.
- G. Arora, B. K. Singh, Numerical solution of Burgers' equation with modified cubic B-spline differential quadrature method, Appl. Math. Comput. 224 (2013) 166-177. http://dx.doi.org/10.1016/j.amc.2013.08.071
- Asai Asaithambi, Numerical solution of the Burgers' equation by automatic differentiation, Appl. Math. Comput. 216 (2010) 2700-2708. doi:10.1016/j.amc.2010.03.115
- E. Benton, G.W. Platzman, A table of solutions of the one-dimensional Burges equations, Quart. Appl. Math. 30 (1972) 195-212.
- A.G. Bratsos, A fourth-order numerical scheme for solving the modified Burgers equation, Computers and Mathematics with Applications 60 (2010) 1393-1400. doi:10.1016/j.camwa.2010.06.021
- J.M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1 (1948) 171-199.
- J.M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, Trans. R. Neth. Acad. Sci. Amst. 17 (1939) 1-53.
- J.D. Cole, On a quasilinear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9 (1951) 225-236.
- İ. Dağ, D. Irk, B. Saka, A numerical solution of the Burgers' equation using cubic B-splines, Applied Mathematics and Computation 163 (2005) 199-211. doi:10.1016/j.amc.2004.01.028
- İ. Dağ, D. Irk, A. Şahin, B-spline collocation methods for numerical solitions of the Burgers' equation, Mathematical Problems in Engineering 2005:5 (2005) 521-538. DOI: 10.1155/MPE.2005.521
- A. Korkmaz, İ. Dağ, Cubic B-spline differential quadrature methods and stability for Burgers' equation, International Journal for Computer-Aided Engineering and Software 30 (2013) 320-344. DOI: 10.1108/02644401311314312
- H. Brezis, F. Browder, Partial Differential Equations in the 20th Century, 135 (1998) 76-144. Article No. AI971713.
- I.A. Ganaie, V.K. Kukreja, Numerical solution of Burgers' equation by cubic Hermite collocation method, Applied Mathematics and Computation 237 (2014) 571-581. http://dx.doi.org/10.1016/j.amc.2014.03.102.
- J. Geiser, Iterative Splitting Methods for Differential Equations, Chapman & Hall/CRC 2011.
- M. Gulsu, A finite difference approach for solution of Burgers equation, Applied Mathematics and Computation 175 (2006) 1245-1255. doi:10.1016/j.amc.2005.08.042
- C.G. Zhu, R.H. Wang, Numerical solution of Burgers' equation by cubic B-spline quasi-interpolation, Appl. Math. Comput. 208 (2009) 260-272. DOI: 10.1016/j.amc.2008.11.045.
- R. Jiwari, A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation, Computer Physics Communications 183 (2012) 2413-2423. doi:10.1016/j.cpc.2012.06.009.
- K. R. Raslan, A Collocation solution for burgers equation using quadratic B-spline finite elements, Intern. J. Computer Math. 80 (2003) 931-938. DOI: 10.1080=0020716031000079554
- S. Kutluay, A. Esen, İ. Dağ, Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method, Journal of Computational and Applied Mathematics 167 (2004) 21--33. doi:10.1016/j.cam.2003.09.043
- S. Kutluay, A. Esen, A Lumped galerkin method for solving the Burgers equation, International Journal of Computer Mathematics 81 (2004) 1433--1444. DOI: 10.1080/00207160412331286833
- R. Jiwari, A hybrid numerical scheme for the numerical solution of the Burgers' equation, Computer Physics Communications 188 (2015) 59--67, http://dx.doi.org/10.1016/j.cpc.2014.11.004
- M. Seydaoğlu, U. Erdoğan and T. Öziş, Numerical solution of Burgers' equation with high order splitting methods, Journal of Computational and Applied Mathematics 291 (2016) 410--421, http://dx.doi.org/10.1016/j.cam.2015.04.021
- M. Sarboland and A. Aminataei, On the Numerical Solution of One-Dimensional Nonlinear Nonhomogeneous Burgers' Equation, Journal of Applied Mathematics, Volume 2014, Article ID 598432, 15 pages, http://dx.doi.org/10.1155/2014/598432
- I.A. Ganaie and V.K. Kukreja, Numerical solution of Burgers' equation by cubic Hermite collocation method, Applied Mathematics and Computation 237 (2014) 571--581, http://dx.doi.org/10.1016/j.amc.2014.03.102
- E. Ashpazzadeh, B. Han and M. Lakestani, Biorthogonal multiwavelets on the interval for numerical solutions of Burgers' equation, Journal of Computational and Applied Mathematics 317 (2017) 510--534, http://dx.doi.org/10.1016/j.cam.2016.11.045
- V. Mukundan and A. Awasthi, Efficient numerical techniques for Burgers' equation, Applied Mathematics and Computation 262 (2015) 282--297, http://dx.doi.org/10.1016/j.amc.2015.03.122
- S.R. Shesha, A.L. Nargund and N.M. Bujurke, Numerical solution of non-planar Burgers equation by Haar wavelet method, Journal of Mathematical Modeling Vol. 5, No. 2, 2017, pp. 89-118.
- M. Tamsir, V.K. srivastava and R. Jiwari, An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers' equation, Applied Mathematics and Computation 290 (2016) 111--124, http://dx.doi.org/10.1016/j.amc.2016.05.048
- S. Kutluay, A.R. Bahadir, A. Özdeş, Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, Journal of Computational and Applied Mathematics 103 (1999) 251-261.
- Yun Gao, Li-Hua Le, Bao-Chang Shi, Numerical solution of Burgers' equation by lattice Boltzmann method, Applied Mathematics and Computation 219 (2013) 7685--7692. http://dx.doi.org/10.1016/j.amc.2013.01.056
- R.C. Mittal, R.K. Jain, Numerical solutions of nonlinear Burgers' equation with modified cubic B-splines collocation method, Applied Mathematics and Computation 218 (2012) 7839--7855. doi:10.1016/j.amc.2012.01.059
- P.M. Prenter, Splines and Variational Methods, Wiley, New York, 1975.
- M. A. Ramadan *, T. S. El-Danaf, F.E.I. Abd Alaal, A numerical solution of the Burgers equation using septic B-splines, Chaos, Solitons and Fractals 26 (2005) 795--804. doi:10.1016/j.chaos.2005.01.054
- S.S. Xiea, S. Heob, S. Kimc, G. Wooc, S. Yi, Numerical solution of one-dimensional Burgers' equation using reproducing kernel function, Journal of Computational and Applied Mathematics 214 (2008) 417 -- 434. doi:10.1016/j.cam.2007.03.010
- B. Sportisse, An analysis of operator splitting techniques in the stiff case, Journal of Computational Physics 161 (2000) 140--168. doi:10.1006/jcph.2000.6495
- G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968) 506-517.
- M. Gulsu, T. Öziş, Numerical solution of Burgers equation with restrictive Taylor approximation, Applied Mathematics and Computation 171 (2005) 1192--1200. doi:10.1016/j.amc.2005.01.106
- M. Xu, R.H. Wang, J.H. Zhang, Q. Fang, A novel numerical scheme for solving Burgers' equation, Applied Mathematics and Computation 217 (2011) 4473--4482. doi:10.1016/j.amc.2010.10.050
- J. Von Neumann and R. D. Richtmyer, A Method for the Numerical Calculation of Hydrodynamic Shocks, J. Appl. Phys. 21 (1950) 232-237.
Numerical Solution of Burger's Type Equation Using Finite Element Collocation method with Strang Splitting
Year 2020,
, 29 - 45, 20.03.2020
Yusuf Uçar
,
Murat Yağmurlu
,
İhsan Çelikkaya
Abstract
The nonlinear Burgers equation, which has a convection term, a viscosity term and a time dependent term in its structure, has been splitted according to the time term and then has been solved by finite element collocation method using cubic B-spline bases. By splitting the equation U_{t}+UU_{x}=vU_{xx} two simpler sub problems U_{t}+UU_{x}=0 and U_{t}-vU_{xx}=0 have been obtained. A discretization process has been performed for each of these sub-problems and the stability analyzes have been carried out by Fourier (von Neumann) series method. Then, both sub-problems have been solved using the Strang splitting technique to obtain numerical results. To see the effectiveness of the present method, which is a combination of finite element method and Strang splitting technique, we have calculated the frequently used error norms ‖e‖₁, L₂ and L_{∞} in the literature and have made a comparison between exact and a numerical solution.
References
- H. Bateman, Some recent researches on the motion of fluids, Monthly Weather Rev. 43 (1915) 163-170.
- A.J. Mohamad Jawad, S. Kumar and A. Biswas, Soliton solutions of a few nonlinear wave equations in engineering sciences, Sharif University of Technology Scientica Iranica, Transactions D (2014) 21(3), 861-869.
- A. Neirameh and M. Eslami, An analytical method for finding exact solitary wave solutions of the coupled (2+1)-dimensional Painleve Burgers equation, Scientia Iranica B (2017) 24(2), 715-726.
- S. Haq, A. Hussain, M. Uddin, On the numerical solution of nonlinear Burgers'-type equations using meshless method of lines, Applied Mathematics and Computation 218 (2012) 6280-6290. doi:10.1016/j.amc.2011.11.106
- A.H.A. Ali, G.A. Gardner, L.R.T. Gardner, A collocation solution for Burgers' equation using cubic B-spline finite elements, Comput. Methods Appl. Mech.Eng. 100 (1992) 325-337.
- G. Arora, B. K. Singh, Numerical solution of Burgers' equation with modified cubic B-spline differential quadrature method, Appl. Math. Comput. 224 (2013) 166-177. http://dx.doi.org/10.1016/j.amc.2013.08.071
- Asai Asaithambi, Numerical solution of the Burgers' equation by automatic differentiation, Appl. Math. Comput. 216 (2010) 2700-2708. doi:10.1016/j.amc.2010.03.115
- E. Benton, G.W. Platzman, A table of solutions of the one-dimensional Burges equations, Quart. Appl. Math. 30 (1972) 195-212.
- A.G. Bratsos, A fourth-order numerical scheme for solving the modified Burgers equation, Computers and Mathematics with Applications 60 (2010) 1393-1400. doi:10.1016/j.camwa.2010.06.021
- J.M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1 (1948) 171-199.
- J.M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, Trans. R. Neth. Acad. Sci. Amst. 17 (1939) 1-53.
- J.D. Cole, On a quasilinear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9 (1951) 225-236.
- İ. Dağ, D. Irk, B. Saka, A numerical solution of the Burgers' equation using cubic B-splines, Applied Mathematics and Computation 163 (2005) 199-211. doi:10.1016/j.amc.2004.01.028
- İ. Dağ, D. Irk, A. Şahin, B-spline collocation methods for numerical solitions of the Burgers' equation, Mathematical Problems in Engineering 2005:5 (2005) 521-538. DOI: 10.1155/MPE.2005.521
- A. Korkmaz, İ. Dağ, Cubic B-spline differential quadrature methods and stability for Burgers' equation, International Journal for Computer-Aided Engineering and Software 30 (2013) 320-344. DOI: 10.1108/02644401311314312
- H. Brezis, F. Browder, Partial Differential Equations in the 20th Century, 135 (1998) 76-144. Article No. AI971713.
- I.A. Ganaie, V.K. Kukreja, Numerical solution of Burgers' equation by cubic Hermite collocation method, Applied Mathematics and Computation 237 (2014) 571-581. http://dx.doi.org/10.1016/j.amc.2014.03.102.
- J. Geiser, Iterative Splitting Methods for Differential Equations, Chapman & Hall/CRC 2011.
- M. Gulsu, A finite difference approach for solution of Burgers equation, Applied Mathematics and Computation 175 (2006) 1245-1255. doi:10.1016/j.amc.2005.08.042
- C.G. Zhu, R.H. Wang, Numerical solution of Burgers' equation by cubic B-spline quasi-interpolation, Appl. Math. Comput. 208 (2009) 260-272. DOI: 10.1016/j.amc.2008.11.045.
- R. Jiwari, A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation, Computer Physics Communications 183 (2012) 2413-2423. doi:10.1016/j.cpc.2012.06.009.
- K. R. Raslan, A Collocation solution for burgers equation using quadratic B-spline finite elements, Intern. J. Computer Math. 80 (2003) 931-938. DOI: 10.1080=0020716031000079554
- S. Kutluay, A. Esen, İ. Dağ, Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method, Journal of Computational and Applied Mathematics 167 (2004) 21--33. doi:10.1016/j.cam.2003.09.043
- S. Kutluay, A. Esen, A Lumped galerkin method for solving the Burgers equation, International Journal of Computer Mathematics 81 (2004) 1433--1444. DOI: 10.1080/00207160412331286833
- R. Jiwari, A hybrid numerical scheme for the numerical solution of the Burgers' equation, Computer Physics Communications 188 (2015) 59--67, http://dx.doi.org/10.1016/j.cpc.2014.11.004
- M. Seydaoğlu, U. Erdoğan and T. Öziş, Numerical solution of Burgers' equation with high order splitting methods, Journal of Computational and Applied Mathematics 291 (2016) 410--421, http://dx.doi.org/10.1016/j.cam.2015.04.021
- M. Sarboland and A. Aminataei, On the Numerical Solution of One-Dimensional Nonlinear Nonhomogeneous Burgers' Equation, Journal of Applied Mathematics, Volume 2014, Article ID 598432, 15 pages, http://dx.doi.org/10.1155/2014/598432
- I.A. Ganaie and V.K. Kukreja, Numerical solution of Burgers' equation by cubic Hermite collocation method, Applied Mathematics and Computation 237 (2014) 571--581, http://dx.doi.org/10.1016/j.amc.2014.03.102
- E. Ashpazzadeh, B. Han and M. Lakestani, Biorthogonal multiwavelets on the interval for numerical solutions of Burgers' equation, Journal of Computational and Applied Mathematics 317 (2017) 510--534, http://dx.doi.org/10.1016/j.cam.2016.11.045
- V. Mukundan and A. Awasthi, Efficient numerical techniques for Burgers' equation, Applied Mathematics and Computation 262 (2015) 282--297, http://dx.doi.org/10.1016/j.amc.2015.03.122
- S.R. Shesha, A.L. Nargund and N.M. Bujurke, Numerical solution of non-planar Burgers equation by Haar wavelet method, Journal of Mathematical Modeling Vol. 5, No. 2, 2017, pp. 89-118.
- M. Tamsir, V.K. srivastava and R. Jiwari, An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers' equation, Applied Mathematics and Computation 290 (2016) 111--124, http://dx.doi.org/10.1016/j.amc.2016.05.048
- S. Kutluay, A.R. Bahadir, A. Özdeş, Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, Journal of Computational and Applied Mathematics 103 (1999) 251-261.
- Yun Gao, Li-Hua Le, Bao-Chang Shi, Numerical solution of Burgers' equation by lattice Boltzmann method, Applied Mathematics and Computation 219 (2013) 7685--7692. http://dx.doi.org/10.1016/j.amc.2013.01.056
- R.C. Mittal, R.K. Jain, Numerical solutions of nonlinear Burgers' equation with modified cubic B-splines collocation method, Applied Mathematics and Computation 218 (2012) 7839--7855. doi:10.1016/j.amc.2012.01.059
- P.M. Prenter, Splines and Variational Methods, Wiley, New York, 1975.
- M. A. Ramadan *, T. S. El-Danaf, F.E.I. Abd Alaal, A numerical solution of the Burgers equation using septic B-splines, Chaos, Solitons and Fractals 26 (2005) 795--804. doi:10.1016/j.chaos.2005.01.054
- S.S. Xiea, S. Heob, S. Kimc, G. Wooc, S. Yi, Numerical solution of one-dimensional Burgers' equation using reproducing kernel function, Journal of Computational and Applied Mathematics 214 (2008) 417 -- 434. doi:10.1016/j.cam.2007.03.010
- B. Sportisse, An analysis of operator splitting techniques in the stiff case, Journal of Computational Physics 161 (2000) 140--168. doi:10.1006/jcph.2000.6495
- G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968) 506-517.
- M. Gulsu, T. Öziş, Numerical solution of Burgers equation with restrictive Taylor approximation, Applied Mathematics and Computation 171 (2005) 1192--1200. doi:10.1016/j.amc.2005.01.106
- M. Xu, R.H. Wang, J.H. Zhang, Q. Fang, A novel numerical scheme for solving Burgers' equation, Applied Mathematics and Computation 217 (2011) 4473--4482. doi:10.1016/j.amc.2010.10.050
- J. Von Neumann and R. D. Richtmyer, A Method for the Numerical Calculation of Hydrodynamic Shocks, J. Appl. Phys. 21 (1950) 232-237.