[1] Ali, A. T., Special Smarandache Curves in the Euclidean Space, International Journal of
Mathematical Combinatorics, Vol.2, pp.30-36, 2010.
[2] Blaschke, W., Differential Geometrie and Geometrischke Grundlagen ven Einsteins Relativitasttheorie
Dover. New York. 1945
[3] Dimentberg F.M (1965) The Screw Calculus and its Applications in Mechanics. English
translation: AD680993, Clearinghouse for Federal and Scientific Technical Information,
(Izdat. Nauka, Moscow,USSR)
[4] Hacisalihoglu H.H (1983) Hareket Geometrisi ve Kuaterniyonlar Teorisi. Gazi Üniversitesi
Fen-Edb Fakültesi
[5] Kahraman, T., Uğurlu, H. H., Dual Smarandache Curves and Smarandache Ruled Surfaces,
Mathematical Sciences and Applications E-Notes.(Accepted)
[6] Kucuk A, Gursoy O (2004) On the invariants of Bertrand trajectory surface offsets. App Math
and Comp 151:763-773.
[7] O’Neill B (1983) Semi-Riemannian Geometry with Applications to Relativity. Academic Press
London
[8] Onder, M., Ugurlu, H.H., Dual Darboux Frame of a Spacelike Ruled Surface and Darboux
Approach to Mannheim Offsets of Spacelike Ruled Surfaces, arXiv:1108.6076[math.DG]
[9] Turgut, M., Yilmaz, S., Smarandache Curves in Minkowski Space-time, Int. J. Math. Comb., 3
(2008) 51-55.
[10] Ugurlu H.H, Çaliskan A (1996) The Study Mapping for Directed Spacelike and Timelike Lines
in Minkowski 3-Space R_1^3. Mathematical and Computational Applications 1(3.2):142-148
[11] Ugurlu H.H, Çaliskan A (2012) Darboux Ani Dönme Vektörleri ile Spacelike ve Timelike
Yüzeyler Geometrisi. Celal Bayar Üniversitesi Yayınları Yayın No: 0006
[12] Veldkamp G.R (1976) On the use of dual numbers, vectors and matrices in instantaneous
spatial kinematics. Mechanism and Mach Theory 11:141-156
Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere
[1] Ali, A. T., Special Smarandache Curves in the Euclidean Space, International Journal of
Mathematical Combinatorics, Vol.2, pp.30-36, 2010.
[2] Blaschke, W., Differential Geometrie and Geometrischke Grundlagen ven Einsteins Relativitasttheorie
Dover. New York. 1945
[3] Dimentberg F.M (1965) The Screw Calculus and its Applications in Mechanics. English
translation: AD680993, Clearinghouse for Federal and Scientific Technical Information,
(Izdat. Nauka, Moscow,USSR)
[4] Hacisalihoglu H.H (1983) Hareket Geometrisi ve Kuaterniyonlar Teorisi. Gazi Üniversitesi
Fen-Edb Fakültesi
[5] Kahraman, T., Uğurlu, H. H., Dual Smarandache Curves and Smarandache Ruled Surfaces,
Mathematical Sciences and Applications E-Notes.(Accepted)
[6] Kucuk A, Gursoy O (2004) On the invariants of Bertrand trajectory surface offsets. App Math
and Comp 151:763-773.
[7] O’Neill B (1983) Semi-Riemannian Geometry with Applications to Relativity. Academic Press
London
[8] Onder, M., Ugurlu, H.H., Dual Darboux Frame of a Spacelike Ruled Surface and Darboux
Approach to Mannheim Offsets of Spacelike Ruled Surfaces, arXiv:1108.6076[math.DG]
[9] Turgut, M., Yilmaz, S., Smarandache Curves in Minkowski Space-time, Int. J. Math. Comb., 3
(2008) 51-55.
[10] Ugurlu H.H, Çaliskan A (1996) The Study Mapping for Directed Spacelike and Timelike Lines
in Minkowski 3-Space R_1^3. Mathematical and Computational Applications 1(3.2):142-148
[11] Ugurlu H.H, Çaliskan A (2012) Darboux Ani Dönme Vektörleri ile Spacelike ve Timelike
Yüzeyler Geometrisi. Celal Bayar Üniversitesi Yayınları Yayın No: 0006
[12] Veldkamp G.R (1976) On the use of dual numbers, vectors and matrices in instantaneous
spatial kinematics. Mechanism and Mach Theory 11:141-156
Kahraman, T., & Uğurlu, H. H. (2016). Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere. Mathematical Sciences and Applications E-Notes, 4(2), 1-13. https://doi.org/10.36753/mathenot.421439
AMA
Kahraman T, Uğurlu HH. Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere. Math. Sci. Appl. E-Notes. October 2016;4(2):1-13. doi:10.36753/mathenot.421439
Chicago
Kahraman, Tanju, and Hasan Hüseyin Uğurlu. “Dual Smarandache Curves of a Timelike Curve Lying on Unit Dual Lorentzian Sphere”. Mathematical Sciences and Applications E-Notes 4, no. 2 (October 2016): 1-13. https://doi.org/10.36753/mathenot.421439.
EndNote
Kahraman T, Uğurlu HH (October 1, 2016) Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere. Mathematical Sciences and Applications E-Notes 4 2 1–13.
IEEE
T. Kahraman and H. H. Uğurlu, “Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere”, Math. Sci. Appl. E-Notes, vol. 4, no. 2, pp. 1–13, 2016, doi: 10.36753/mathenot.421439.
ISNAD
Kahraman, Tanju - Uğurlu, Hasan Hüseyin. “Dual Smarandache Curves of a Timelike Curve Lying on Unit Dual Lorentzian Sphere”. Mathematical Sciences and Applications E-Notes 4/2 (October 2016), 1-13. https://doi.org/10.36753/mathenot.421439.
JAMA
Kahraman T, Uğurlu HH. Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere. Math. Sci. Appl. E-Notes. 2016;4:1–13.
MLA
Kahraman, Tanju and Hasan Hüseyin Uğurlu. “Dual Smarandache Curves of a Timelike Curve Lying on Unit Dual Lorentzian Sphere”. Mathematical Sciences and Applications E-Notes, vol. 4, no. 2, 2016, pp. 1-13, doi:10.36753/mathenot.421439.
Vancouver
Kahraman T, Uğurlu HH. Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere. Math. Sci. Appl. E-Notes. 2016;4(2):1-13.