[1] Bede, B., Coroianu, L., Gal, S. G.: Approximation and shape preserving properties of the Bernstein operator of max-product kind. Intern. J. Math. and Math. Sci. 26 pages (2009). doi:10.1155/2009/590589
[2] Bede, B., Gal, S. G.: Approximation by nonlinear Bernstein and Favard-Szasz- Mirakjan operators of max-product kind. Journal of Concrete and Applicable Mathematics. 8 (2), 193-207 (2010).
[3] Bede, B., Coroianu, L., Gal, S. G.: Approximation and shape preserving properties of the nonlinear Meyer-Konig and Zeller operator of max-product kind. Numerical Functional Analysis and Optimization. 31 (3), 232-253 (2010).
[11] Jain, Gopi C.: Approximation of functions by a new class of linear operators. Journal of the Australian Mathematical
Society. 13 (3) , 271-276 (1972).
[16] Mishra, V.N., Sharma, P., Birou, M.: Approximation by Modified Jain-Baskakov Operators. Georgian Mathematical Journal. 27 (3), 403-412 (2020).
[17] Mishra, V.N., Patel, P.: Some approximation properties of modified Jain-Beta operators. Journal of Calculus of Variations. Article ID 489249 (2013).
[18] Patel, P., Mishra, V.N.: Jain-Baskakov Operators and its different generalization. Acta Mathematica Vietnamica. 40 (4), 715–733, (2015).
[19] Patel, P., Mishra, V.N.: On Approximation properties of modified Sázas-Mirakyan operators via Jain Operators. Anal. Theory Appl. 32 (3), 232-241 (2016).
[20] Çiçek, H., Izgi, A., Ayhan, M. : GBS Operators of Bivariate Durrmeyer Operators on Simplex. Communications in
Advanced Mathematical Sciences. Jan. 2021. https://dx.doi.org/10.33434/cams.932416 ̇
[21] Çiçek, H., Izgi, A.: The q-Chlodowsky and q-Szasz-Durrmeyer Hybrid Operators on Weighted Spaces. Journal of Mathematics. (2020). https://doi.org/10.1155/2020/8682598.
Year 2022,
Volume: 10 Issue: 4, 179 - 189, 22.12.2022
[1] Bede, B., Coroianu, L., Gal, S. G.: Approximation and shape preserving properties of the Bernstein operator of max-product kind. Intern. J. Math. and Math. Sci. 26 pages (2009). doi:10.1155/2009/590589
[2] Bede, B., Gal, S. G.: Approximation by nonlinear Bernstein and Favard-Szasz- Mirakjan operators of max-product kind. Journal of Concrete and Applicable Mathematics. 8 (2), 193-207 (2010).
[3] Bede, B., Coroianu, L., Gal, S. G.: Approximation and shape preserving properties of the nonlinear Meyer-Konig and Zeller operator of max-product kind. Numerical Functional Analysis and Optimization. 31 (3), 232-253 (2010).
[11] Jain, Gopi C.: Approximation of functions by a new class of linear operators. Journal of the Australian Mathematical
Society. 13 (3) , 271-276 (1972).
[16] Mishra, V.N., Sharma, P., Birou, M.: Approximation by Modified Jain-Baskakov Operators. Georgian Mathematical Journal. 27 (3), 403-412 (2020).
[17] Mishra, V.N., Patel, P.: Some approximation properties of modified Jain-Beta operators. Journal of Calculus of Variations. Article ID 489249 (2013).
[18] Patel, P., Mishra, V.N.: Jain-Baskakov Operators and its different generalization. Acta Mathematica Vietnamica. 40 (4), 715–733, (2015).
[19] Patel, P., Mishra, V.N.: On Approximation properties of modified Sázas-Mirakyan operators via Jain Operators. Anal. Theory Appl. 32 (3), 232-241 (2016).
[20] Çiçek, H., Izgi, A., Ayhan, M. : GBS Operators of Bivariate Durrmeyer Operators on Simplex. Communications in
Advanced Mathematical Sciences. Jan. 2021. https://dx.doi.org/10.33434/cams.932416 ̇
[21] Çiçek, H., Izgi, A.: The q-Chlodowsky and q-Szasz-Durrmeyer Hybrid Operators on Weighted Spaces. Journal of Mathematics. (2020). https://doi.org/10.1155/2020/8682598.
Kırcı Serenbay, S., Dalmanoğlu, Ö., & Acar, E. (2022). Approximation Properties of The Nonlinear Jain Operators. Mathematical Sciences and Applications E-Notes, 10(4), 179-189. https://doi.org/10.36753/mathenot.983767
AMA
Kırcı Serenbay S, Dalmanoğlu Ö, Acar E. Approximation Properties of The Nonlinear Jain Operators. Math. Sci. Appl. E-Notes. December 2022;10(4):179-189. doi:10.36753/mathenot.983767
Chicago
Kırcı Serenbay, Sevilay, Özge Dalmanoğlu, and Ecem Acar. “Approximation Properties of The Nonlinear Jain Operators”. Mathematical Sciences and Applications E-Notes 10, no. 4 (December 2022): 179-89. https://doi.org/10.36753/mathenot.983767.
EndNote
Kırcı Serenbay S, Dalmanoğlu Ö, Acar E (December 1, 2022) Approximation Properties of The Nonlinear Jain Operators. Mathematical Sciences and Applications E-Notes 10 4 179–189.
IEEE
S. Kırcı Serenbay, Ö. Dalmanoğlu, and E. Acar, “Approximation Properties of The Nonlinear Jain Operators”, Math. Sci. Appl. E-Notes, vol. 10, no. 4, pp. 179–189, 2022, doi: 10.36753/mathenot.983767.
ISNAD
Kırcı Serenbay, Sevilay et al. “Approximation Properties of The Nonlinear Jain Operators”. Mathematical Sciences and Applications E-Notes 10/4 (December 2022), 179-189. https://doi.org/10.36753/mathenot.983767.
JAMA
Kırcı Serenbay S, Dalmanoğlu Ö, Acar E. Approximation Properties of The Nonlinear Jain Operators. Math. Sci. Appl. E-Notes. 2022;10:179–189.
MLA
Kırcı Serenbay, Sevilay et al. “Approximation Properties of The Nonlinear Jain Operators”. Mathematical Sciences and Applications E-Notes, vol. 10, no. 4, 2022, pp. 179-8, doi:10.36753/mathenot.983767.
Vancouver
Kırcı Serenbay S, Dalmanoğlu Ö, Acar E. Approximation Properties of The Nonlinear Jain Operators. Math. Sci. Appl. E-Notes. 2022;10(4):179-8.