Research Article
BibTex RIS Cite
Year 2023, Volume: 11 Issue: 4, 198 - 212, 25.10.2023

Abstract

References

  • [1]T. Acar, A.M. Acu and N. Manav, Approximation of functions by genuine Bernstein Dur- rmeyer type operators, J. Math. Inequal. 12 (4); 975 􀀀 987; (2018):
  • [2] A. M. Acu, T. Acar, V. A. Radu.: Approximation by modi ed U n operators. Rev. R. Acad. Ciene. Exactas Fis. Nat. Ser. A Math. racsam 113(2019) 2715-2729.
  • [3] S. N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur le calcul des proba- bilites, Commun. Kharkov Math. Soc. 13, 1-2, 1912 /1913.
  • [4] N.L. Braha, Some properties of new modi ed Szasz-Mirakyan operators in polynomial weight spaces via power summability method, Bull. Math. Anal. Appl. 10:3 (2018) 53{65.
  • [5] N.L. Braha, Some properties of Baskakov-Schurer-Szasz operators via power summability methods. Quaest. Math. 42 (2019), no. 10, 1411-1426.
  • [6] Q. B. Cai, B. Y. Lian, G. Zhou.: Approximation Properties of 􀀀 Bernstein operators, J. Inequal. Appl. 2018 (2018) Article 61.
  • [7] N. C etin, Approximation and geometric properties of complex -Bernstein operator, Results Math. 74 , Article number: 40; (2019):
  • [8] A Izg,(2012),Approximation by a Class of New Type Bernstein Polynomials of one and two Variables,Global Journal of Pure and Applied Mathematics, 8(5), 55{71.
  • [9] A. Kajla and D. Miclaus, Blending Type Approximation by GBS Operators of Generalized Bernstein-Durrmeyer Type, Results Math. 73 Article number: 1, (2018) .
  • [10] K. Khan and D. K. Lobiyal, Bezier curves based on Lupas (p; q)-analogue of Bernstein functions in CAGD, Journal of Computational and Applied Mathematics, 317, 458{477, (2017).
  • [11] K. Khan, D. K. Lobiyal and A. Kilicman, Bezier curves and surfaces based on modi ed Bern- stein polynomials, Ajerbaijan Journal of Mathematics, 9 (1), 3-21, 2019.
  • [12] K. Khan, D.K. Lobiyal and A. Kilicman, A de Casteljau Algorithm for Bernstein type Poly- nomials based on (p; q)-integers, Applcatons And Appled Mathematcs, 13 (2), 997{1017, 2018.
  • [13] B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces,Indagationes Mathematicae 91:1 (1988) 53{63.
  • [14] G. G. Lorentz,Bernstein polynomials, American Mathematical Soc. (2013).
  • [15] S.A. Mohiuddine, T. Acar and A. Alotaibi, Construction of a new family of Bernstein- Kantorovich operators, Math. Methods Appl. Sci. 40; 7749 􀀀 7759; (2017).
  • [16] F. Schurer, Linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft Report, (1962):

A New Sequence of Bernstein-Durrmeyer Operators and Their $L_p$-Approximation Behaviour

Year 2023, Volume: 11 Issue: 4, 198 - 212, 25.10.2023

Abstract

The purpose of the present manuscript is to present a new sequence of Bernstein-Durrmeyer operators. First, we investigate approximation behaviour for these sequences of operators in Lebesgue Measurable space. Further, we discuss rate of convergence and order of approximation with the aid of Korovkin theorem, modulus of continuity and Peetre K-functional in $l_p$ space. Moreover, Voronovskaja type theorem is introduced to approximate a class of functions which has first and second order continuous derivatives. In the last section, numerical and graphical analysis are investigated to show better approximation behaviour for these sequences of operators.

References

  • [1]T. Acar, A.M. Acu and N. Manav, Approximation of functions by genuine Bernstein Dur- rmeyer type operators, J. Math. Inequal. 12 (4); 975 􀀀 987; (2018):
  • [2] A. M. Acu, T. Acar, V. A. Radu.: Approximation by modi ed U n operators. Rev. R. Acad. Ciene. Exactas Fis. Nat. Ser. A Math. racsam 113(2019) 2715-2729.
  • [3] S. N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur le calcul des proba- bilites, Commun. Kharkov Math. Soc. 13, 1-2, 1912 /1913.
  • [4] N.L. Braha, Some properties of new modi ed Szasz-Mirakyan operators in polynomial weight spaces via power summability method, Bull. Math. Anal. Appl. 10:3 (2018) 53{65.
  • [5] N.L. Braha, Some properties of Baskakov-Schurer-Szasz operators via power summability methods. Quaest. Math. 42 (2019), no. 10, 1411-1426.
  • [6] Q. B. Cai, B. Y. Lian, G. Zhou.: Approximation Properties of 􀀀 Bernstein operators, J. Inequal. Appl. 2018 (2018) Article 61.
  • [7] N. C etin, Approximation and geometric properties of complex -Bernstein operator, Results Math. 74 , Article number: 40; (2019):
  • [8] A Izg,(2012),Approximation by a Class of New Type Bernstein Polynomials of one and two Variables,Global Journal of Pure and Applied Mathematics, 8(5), 55{71.
  • [9] A. Kajla and D. Miclaus, Blending Type Approximation by GBS Operators of Generalized Bernstein-Durrmeyer Type, Results Math. 73 Article number: 1, (2018) .
  • [10] K. Khan and D. K. Lobiyal, Bezier curves based on Lupas (p; q)-analogue of Bernstein functions in CAGD, Journal of Computational and Applied Mathematics, 317, 458{477, (2017).
  • [11] K. Khan, D. K. Lobiyal and A. Kilicman, Bezier curves and surfaces based on modi ed Bern- stein polynomials, Ajerbaijan Journal of Mathematics, 9 (1), 3-21, 2019.
  • [12] K. Khan, D.K. Lobiyal and A. Kilicman, A de Casteljau Algorithm for Bernstein type Poly- nomials based on (p; q)-integers, Applcatons And Appled Mathematcs, 13 (2), 997{1017, 2018.
  • [13] B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces,Indagationes Mathematicae 91:1 (1988) 53{63.
  • [14] G. G. Lorentz,Bernstein polynomials, American Mathematical Soc. (2013).
  • [15] S.A. Mohiuddine, T. Acar and A. Alotaibi, Construction of a new family of Bernstein- Kantorovich operators, Math. Methods Appl. Sci. 40; 7749 􀀀 7759; (2017).
  • [16] F. Schurer, Linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft Report, (1962):
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Harun Çiçek 0000-0003-3018-3015

Aydın İzgi 0000-0003-3715-8621

Nadeem Rao 0000-0002-5681-9563

Early Pub Date August 8, 2023
Publication Date October 25, 2023
Submission Date August 11, 2022
Acceptance Date November 10, 2022
Published in Issue Year 2023 Volume: 11 Issue: 4

Cite

APA Çiçek, H., İzgi, A., & Rao, N. (2023). A New Sequence of Bernstein-Durrmeyer Operators and Their $L_p$-Approximation Behaviour. Mathematical Sciences and Applications E-Notes, 11(4), 198-212. https://doi.org/10.36753/mathenot.1160715
AMA Çiçek H, İzgi A, Rao N. A New Sequence of Bernstein-Durrmeyer Operators and Their $L_p$-Approximation Behaviour. Math. Sci. Appl. E-Notes. October 2023;11(4):198-212. doi:10.36753/mathenot.1160715
Chicago Çiçek, Harun, Aydın İzgi, and Nadeem Rao. “A New Sequence of Bernstein-Durrmeyer Operators and Their $L_p$-Approximation Behaviour”. Mathematical Sciences and Applications E-Notes 11, no. 4 (October 2023): 198-212. https://doi.org/10.36753/mathenot.1160715.
EndNote Çiçek H, İzgi A, Rao N (October 1, 2023) A New Sequence of Bernstein-Durrmeyer Operators and Their $L_p$-Approximation Behaviour. Mathematical Sciences and Applications E-Notes 11 4 198–212.
IEEE H. Çiçek, A. İzgi, and N. Rao, “A New Sequence of Bernstein-Durrmeyer Operators and Their $L_p$-Approximation Behaviour”, Math. Sci. Appl. E-Notes, vol. 11, no. 4, pp. 198–212, 2023, doi: 10.36753/mathenot.1160715.
ISNAD Çiçek, Harun et al. “A New Sequence of Bernstein-Durrmeyer Operators and Their $L_p$-Approximation Behaviour”. Mathematical Sciences and Applications E-Notes 11/4 (October 2023), 198-212. https://doi.org/10.36753/mathenot.1160715.
JAMA Çiçek H, İzgi A, Rao N. A New Sequence of Bernstein-Durrmeyer Operators and Their $L_p$-Approximation Behaviour. Math. Sci. Appl. E-Notes. 2023;11:198–212.
MLA Çiçek, Harun et al. “A New Sequence of Bernstein-Durrmeyer Operators and Their $L_p$-Approximation Behaviour”. Mathematical Sciences and Applications E-Notes, vol. 11, no. 4, 2023, pp. 198-12, doi:10.36753/mathenot.1160715.
Vancouver Çiçek H, İzgi A, Rao N. A New Sequence of Bernstein-Durrmeyer Operators and Their $L_p$-Approximation Behaviour. Math. Sci. Appl. E-Notes. 2023;11(4):198-212.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.