BibTex RIS Cite

Ortodontik Diş Hareketini Etkileyen Endojen ve Eksojen Maddeler

Year 2016, Volume: 17 Issue: 2, 46 - 53, 01.08.2016

Abstract

Ortodontik diş hareketi kontrollü mekanik kuvvetlerin sürekli uygulanması sonucu gerçekleşmektedir. Son zamanlarda yapılan çalışmalar mekanik kuvvetlerin yanı sıra, sistemik veya lokal ilaç uygulamaları ile diyet takviyelerinin etkileri üzerine odaklanmıştır. Ortodontik diş hareketini etkileyen bu maddeler paratiroid hormon, tiroid hormonları, eikozanoidler, nonsteroid anti-enflamatuvar ilaçlar (NSAİ), parasetamol, kortikosteroidler, bifosfonatlar, kolesterol ilaçları, antikonvülsanlar, oral kontraseptifler, alkol ve nikotin, nitrik oksit ve fluoriddir. Bu medikal ajanların ortodontik diş hareketi hızı ve tedavi süresi üzerine önemli etkileri vardır. NSAİ diş hareketini azaltırken, parasetamolun herhangi bir etkisi bulunmamaktadır. Paratiroid ve tiroksin hormonları diş hareketini arttırmaktadır. Bifosfonatlar güçlü bir inhibe edici etkiye sahiptir. Vitamin D3 diş hareketini stimüle ederken, diyetle alınan kalsiyum ise azaltmaktadır. Ortodontik tedavi sırasında bu maddelerin tüketimi hakkında hastalar ile görüşülmesi önemlidir

References

  • 1. Koçoğlu AB. Diyot lazer kullanımının ortodontik diş hareketi hızı üzerine etkilerinin deneysel olarak incelenmesi. Doktora tezi. Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü, Sivas, Türkiye, 2010.
  • 2. Atik E, Ciğer S. İlaçların ortodontik diş hareketi üzerindeki etkileri. EÜ Dişhek Fak Derg 2012; 33: 13-20.
  • 3. Bartzela T, Türp JC, Motschall E, Maltha JC. Medication effects on the rate of orthodontic tooth movement: A systematic literature review. Am J Orthod Dentofacial Orthop 2009; 135: 16-26.
  • 4. Shinoda Y, Kawaguchi H, Higashikawa A, Hirata M, Miura T, Saito T, et al. Mechanisms underlying catabolic and anabolic functions of parathyroid hormone on bone by combination of culture systems of mouse cells. J Cell Biochem 2010; 109: 755-63.
  • 5. Jilka RL. Molecular and cellular mechanism of the anabolic effect of intermittent PTH. Bone 2007; 40: 1434-46.
  • 6. Kamata M. Effect of parathyroid hormone on tooth movement in rats. Bull Tokyo Med Dent Univ 1972; 19: 411-25.
  • 7. Soma S, Iwamoto M, Higuchi Y, Kurisu K. Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res 1999; 14: 546-54.
  • 8. Caniklioğlu C. Lokal paratiroid hormon uygulamasının ortodontik diş hareketleri üzerinde olan etkisinin incelenmesi. Doktora Tezi. İstanbul Üniversitesi Sağlık Bilimleri Enstitüsü, İstanbul, Türkiye, 1999.
  • 9. Tyrovola JB, Spyropoulos MN. Effects of drugs and systemic factors on orthodontic treatment. Quintessence Int 2001; 32: 365-71.
  • 10. Roodman GD. Role of cytokines in the regulation of bone resorption. Calcif Tissue Int 1993; 53: 94-8.
  • 11. Klaushofer K, Hoffmann O, Gleispach H, Leis HJ, Czerwenka E, Koller K, et al. Bone-resorbing activity of thyroid hormones is related to prostoglandin production in cultured neonatal Mouse calvaria. J Bone Miner Res 1989; 4: 305-12.
  • 12. Verna C, Dalstra M, Melsen B. The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. Eur J Orthod 2000; 22: 343-52.
  • 13. Shirazi M, Nilforoushan D, Alghasi H, Dehpour AR. The role of nitric oxide in orthodontic tooth movement in rats. Angle Orthod 2002; 72: 211-5.
  • 14. Polat Ö, Karaman Aİ. Ortodontik diş hareketleri ve biyokimyasal ajanlar. Türk Ortodonti Dergisi 2004; 17: 140-7.
  • 15. Haruyama N, Igarashi K, Saeki S, Otsuka-Isoya M, Shinoda H, Mitani H. Estrous-cycle-dependent variation in orthodontic tooth movement. J Dent Res 2002; 81: 406-10.
  • 16. Takano-Yamamoto T, Kawakami M, Yamashiro T. Effect of age on the rate of tooth movement in combination with local use of 1,25(OH)2D3 and mechanical force in the rat. J Dent Res 1992; 71: 1487-92.
  • 17. Kale S, Kocadereli İ. Farmakolojik ajanların ortodontik diş hareketi üzerine etkileri. Türk Ortodonti Dergisi 2003; 16: 142- 51.
  • 18. Kawakami M, Takamo-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movements in rats. J Bone Miner Metab 2004; 22: 541-6.
  • 19. Suda T, Ueno Y, Fujii K, Shinki T. Vitamin D and bone. J Cell Biochem 2003; 88: 259-66.
  • 20. Midgett RJ, Shaye R, Fruge JF Jr. The effect of altered bone metabolism on orthodontic tooth movement. Am J Orthod 1981; 80: 256-62.
  • 21. Goldie RS, King GJ. Root resorption and tooth movement in orthodontically treated, calcium-deficient, and lactating rats. Am J Orthod 1984; 85: 424-30.
  • 22. Sarı E. Nimesulid ve Asetilsalisilik Asidin Ortodontik Diş Hareketleri Üzerine Olan Etkilerinin Karşılaştırılması. Doktora Tezi. Genel Kurmay Başkanlığı Gülhane Askeri Tıp Akademisi Sağık Bilimleri Enstitüsü Diş Hekimliği Birliği Merkezi Ortodonti Ana Bilim Dalı Başkanlığı, Ankara, Türkiye, 1999.
  • 23. Mohammed AH, Tatakis DN, Dziak R. Leukotrienes in orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1989; 95: 231-7.
  • 24. Rifkin BR, Tai HH. Elevated thromboxane B2 levels in periodontal disease. J Periodontal Res 1981; 16: 194-8.
  • 25. Gurton AU, Akin E, Sagdic D, Olmez H. Effects of PGI2 and TxA2 analogs and inhibitors in orthodontic tooth movement. Angle Orthod 2004; 74: 526-32.
  • 26. Işımer Y, Işımer A, Uzel İ. Osteoklast aktivasyonuna prostasiklin’in etkileri. Türk Ortodonti Dergisi 1990; 3: 108-11.
  • 27. Mitchell JA, Larkin S, Williams TJ. Cyclooxygenase-2: regulation and relevance in inflammation. Biochem Pharmacol 1995; 50: 1535-42.
  • 28. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 1998; 38: 97-120.
  • 29. Krishnan V, Davidovitch Z. The effect of drugs on orthodontic tooth movement. Orthod Craniofac Res 2006; 9: 163-71.
  • 30. Sakuma Y, Li Z, Pilbeam CC, Alander CB, Chikazu D, Kawaguchi H, et al. Stimulation of cAMP production and cyclooxygenase-2 by prostaglandin E(2) and selective prostaglandin receptor agonists in murine osteoblastic cells. Bone 2004; 34: 827-34.
  • 31. Seifi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod 2003; 25: 199-204.
  • 32. Kale S, Kocadereli I, Atilla P, Aşan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2004; 125: 607-14.
  • 33. Arias OR, Marquez-Orozco MC. Aspirin, acetaminophen, and ibuprofen: their effects on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2006; 130: 364-70.
  • 34. Sari E, Olmez H, Gürton AU. Comparison of some effects of acetylsalicylicacid and rofecoxib during orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2004; 125: 310-5.
  • 35. Giunta D, Keller J, Nielsen FF, Melsen B. Influence of indomethacin on bone turnover related to orthodontic tooth movement in miniature pigs. Am J Orthod Dentofacial Orthop 1995; 108: 361-6.
  • 36. Zhou D, Hughes B, King GJ. Histomorphometric and biochemical study of osteoclasts at orthodontic compression sites in the rat during indomethacin inhibition. Arch Oral Biol 1997; 42: 717-26.
  • 37. Vayda P, Loveless J, Miller R, Theroux K. The effect of short term analgesic usage on the rate of orthodontic tooth movement. (abstract). J Dent Res 2000; 79: 614.
  • 38. Sandy JR, Harris M. Prostaglandins and tooth movement. Eur J Orthod 2003; 6: 175-82.
  • 39. de Carlos F, Cobo J, Díaz-Esnal B, Arguelles J, Vijande M, Costales M. Orthodontic tooth movement after inhibition of cyclooxygenase-2. Am J Orthod Dentofacial Orthop 2006; 129: 402-6.
  • 40. Polat Ö. Nonsteroidal Anti-inflamatuar İlaçların Sabit Ortodontik Apareylerden Kaynaklanan Ağrı Üzerine Etkisi. Doktora Tezi. Selçuk Üniversitesi Sağlık Bilimleri Enstitüsü, Konya, Türkiye, 2004.
  • 41. Arantes GM, Arantes VM, Ashmawi HA, Posso IP. Tenoxicam controls pain without altering orthodontic movement of maxillary canines. Orthod Craniofac Res 2009; 12: 14-9.
  • 42. Gameiro GH, Nouer DF, Pereira-Neto JS, Urtado MB, Novaes PD, de Castro M, et al. The effects of systemic stress on orthodontic tooth movement. Aust Orthod J 2008; 24: 121-8.
  • 43. Stabile AC, Stuani MB, Leite-Panissi CR, Rochaa MJ. Effects of short-term acetaminophen and celecoxib treatment on orthodontic tooth movement and neuronal activation in rat. Brain Res Bull 2009; 79: 396-401.
  • 44. Shetty N, Patil AK, Ganeshkar SV, Hegde S. Comparison of the effects on ibuprofen and acetaminophen on PGE2 levels in the GCF during orthodontic tooth movement: a human study. Prog Orthod 2013; 14: 6.
  • 45. Roche JJ, Cisneros GJ, Acs G. The effect of acetaminophen on tooth movement in rabbits. Angle Orthod 1997; 67: 231-6.
  • 46. Krasny M, Zadurska M, Cessak G, Fiedor P. Analysis of effect of non-steroidal anti-inflammatory drugs on teeth and oral tissues during orthodontic treatment. Acta Pol Pharm 2013; 70: 573-7.
  • 47. Kehoe MJ, Cohen SM, Zarrinnia K, Cowan A. The effect of acetaminophen, ibuprofen, and misoprostol on prostaglandin E2 synthesis and the degree and rate of orthodontic tooth movement. Angle Orthod 1996; 66: 339-49.
  • 48. Angeli A, Dovio A, Sartori ML, Masera RG, Ceoloni B, Prolo P, et al. Interactions between glucocorticoids and cytokines in the bone microenvironment. Ann N Y Acad Sci 2002; 966: 97-107.
  • 49. Ong CK, Walsh LJ, Harbrow D, Taverne AA, Symons AL. Orthodontic tooth movement in the prednisolone-treated rat. Angle Orthod 2000; 70: 118-25.
  • 50. Gürses N. Prednison ve isoflavon’un ortodontik diş hareketleri pekiştirme tedavisi üzerine etkilerinin histopatolojik olarak incelenmesi. Doktora Tezi. Atatürk Üniversitesi. Sağlık Bilimleri Enstitüsü, Erzurum, Türkiye, 2006.
  • 51. Ashcraft MB, Southard KA, Tolley EA. The effect of corticosteroidinduced osteoporosis on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1992; 102: 310-9.
  • 52. Kalia S, Melsen B, Verna C. Tissue reaction to orthodontic tooth movement in acute and chronic corticosteroid treatment. Orthod Craniofac Res 2004; 7: 26-34.
  • 53. Zahrowski JJ. Bisphosphonate treatment: an orthodontic concern calling for a proactive approach. Am J Orthod Dentofacial Orthop 2007; 131: 311-20.
  • 54. Krishnan V, Vijayaraghavan N, Manoharan M, Raj J, Davidovitch Z. The effects of drug intake by patients on orthodontic tooth movement. Semin Orthod 2012; 18: 278-85.
  • 55. Igarashi K, Mitani H, Adachi H, Shinoda H. Anchorage and retentive effects of a bisphosphonate (AHBuBP) on tooth movements in rats. Am J Orthod Dentofacial Orthop 1994; 106: 279-89.
  • 56. Adachi H, Igarashi K, Mitani H, Shinoda H. Effects of topical administration of a bisphosphonate (risedronate) on orthodontic tooth movements in rats. J Dent Res 1994; 73: 1478-86.
  • 57. Keles A, Grunes B, Difuria C, Gagari E, Srinivasan V, Darendeliler MA, et al. Inhibition of tooth movement by osteoprotegerin vs. pamidronate under conditions of constant orthodontic force. Eur J Oral Sci 2007; 115: 131-6.
  • 58. Kirschneck C, Wolf M, Reicheneder C, Wahlmann U, Proff P, Roemer P. Strontium ranelate improved tooth anchorage and reduced root resorption in orthodontic treatment of rats. Eur J Pharmacol 2014; 744: 67-75.
  • 59. Mundy GR. Statins and their potential for osteoporosis. Bone 2001; 29: 495-7.
  • 60. Maritz FJ, Conradie MM, Hulley PA, Gopal R, Hough S. Effect of statins on bone mineral density and bone histomorphometry in rodents. Arterioscler Thromb Vasc Biol 2001; 21: 1636-41.
  • 61. Ibrahim N, Mohamed N, Shuid. An update on statins: hope for osteoporotic fracture healing treatment. Curr Drug Targets 2013; 14: 1524-32.
  • 62. Han G, Chen Y, Hou J, Liu C, Chen C, Zhuang J, et al. Effects of simvastatin on relapse and remodeling of periodontal tissues after tooth movement in rats. Am J Orthod Dentofacial Orthop 2010; 138: 550.
  • 63. Pedrera JD, Canal ML, Carvajal J, Postigo S, Villa LF, Hernandez ER, et al. Influence of vitamin D administration on bone ultrasound measurements in patients on anticonvulsant therapy. Eur J Clin Invest 2000; 30: 895-9.
  • 64. Feldkamp J, Becker A, Witte OW, Scharff D, Scherbaum WA. Longterm anti convulsant therapy leads to low bone mineral densityevidence for direct drug effects of phenytoin and carbamazepine on human osteoblast-like cells. Exp Clin Endocrinol Diabetes 2000; 108: 37-43.
  • 65. Herter LD, Accetta SG. Contraception and pregnancy in adolescence. J Pediatr 2001; 77: 170-8.
  • 66. Olyaee P, Mirzakouchaki B, Ghajar K, Seyyedi SA, Shalchi M, Garjani A, et al. The effect of oral contraceptives on orthodontic tooth movement in rat. Med Oral Patol Oral Cir Bucal 2013; 18: 146-50.
  • 67. Chakkalakal DA. Alcohol-induced bone loss and deficient bone repair. Alcohol Clin Exp Res 2005; 29: 2077-90.
  • 68. Ronis MJ, Mercer K, Chen JR. Effects of nutrition and alcohol consumption on bone loss. Curr Osteoporos Rep 2011; 9: 53-9.
  • 69. Sodagar A, Donyavi Z, Arab S, Kharrazifard MJ. Effect of nicotine on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 2011; 139: 261-5.
  • 70. Ford H, Suri S, Nilforoushan D, Manolson M, Gong SG. Nitric oxide in human gingival crevicular fluid after orthodontic force application. Arch Oral Biol 2014; 59: 1211-6.
  • 71. Hayashi K, Igarashi K, Miyoshi K, Shinoda H, Mitani H. Involment of nitric oxide in orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 2002; 122: 306-9.
  • 72. Hellsing E, Hammarström L. The effects of pregnancy and fluoride on orthodontic tooth movements in rats. Eur J Orthod 1991; 13: 223-30.

Endogenous and Exogenous Substances Influencing the Orthodontic Tooth Movement

Year 2016, Volume: 17 Issue: 2, 46 - 53, 01.08.2016

Abstract

Orthodontic tooth movement occurs as a result of prolonged application of controlled mechanical forces. Recent studies have focused on the effects of systemic or local applications of medications and the intake of dietary supplements as well as the mechanical forces. Factors affecting the orthodontic tooth movement are parathyroid hormone, thyroid hormones, estrogen, vitamin D3, eicosanoids, nonsteroidal anti-inflammatory drugs (NSAIDs), paracetamol, corticosteroids, bisphosphonates, cholesterol drugs, anticonvulsants, oral contraceptives, alcohol and nicotine use, nitric oxide, and fluoride. These medications have an important effect on the rate of tooth movement and treatment time. NSAIDs decrease tooth movement, but paracetamol has no effect. Parathyroid and thyroxin hormones increase tooth movement. Bisphosphonates have a strong inhibitory effect. Vitamin D3 stimulates tooth movement and dietary calcium seems to reduce it. It is important to discuss with patients about the consumption of these substances during orthodontic treatment.

References

  • 1. Koçoğlu AB. Diyot lazer kullanımının ortodontik diş hareketi hızı üzerine etkilerinin deneysel olarak incelenmesi. Doktora tezi. Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü, Sivas, Türkiye, 2010.
  • 2. Atik E, Ciğer S. İlaçların ortodontik diş hareketi üzerindeki etkileri. EÜ Dişhek Fak Derg 2012; 33: 13-20.
  • 3. Bartzela T, Türp JC, Motschall E, Maltha JC. Medication effects on the rate of orthodontic tooth movement: A systematic literature review. Am J Orthod Dentofacial Orthop 2009; 135: 16-26.
  • 4. Shinoda Y, Kawaguchi H, Higashikawa A, Hirata M, Miura T, Saito T, et al. Mechanisms underlying catabolic and anabolic functions of parathyroid hormone on bone by combination of culture systems of mouse cells. J Cell Biochem 2010; 109: 755-63.
  • 5. Jilka RL. Molecular and cellular mechanism of the anabolic effect of intermittent PTH. Bone 2007; 40: 1434-46.
  • 6. Kamata M. Effect of parathyroid hormone on tooth movement in rats. Bull Tokyo Med Dent Univ 1972; 19: 411-25.
  • 7. Soma S, Iwamoto M, Higuchi Y, Kurisu K. Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res 1999; 14: 546-54.
  • 8. Caniklioğlu C. Lokal paratiroid hormon uygulamasının ortodontik diş hareketleri üzerinde olan etkisinin incelenmesi. Doktora Tezi. İstanbul Üniversitesi Sağlık Bilimleri Enstitüsü, İstanbul, Türkiye, 1999.
  • 9. Tyrovola JB, Spyropoulos MN. Effects of drugs and systemic factors on orthodontic treatment. Quintessence Int 2001; 32: 365-71.
  • 10. Roodman GD. Role of cytokines in the regulation of bone resorption. Calcif Tissue Int 1993; 53: 94-8.
  • 11. Klaushofer K, Hoffmann O, Gleispach H, Leis HJ, Czerwenka E, Koller K, et al. Bone-resorbing activity of thyroid hormones is related to prostoglandin production in cultured neonatal Mouse calvaria. J Bone Miner Res 1989; 4: 305-12.
  • 12. Verna C, Dalstra M, Melsen B. The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. Eur J Orthod 2000; 22: 343-52.
  • 13. Shirazi M, Nilforoushan D, Alghasi H, Dehpour AR. The role of nitric oxide in orthodontic tooth movement in rats. Angle Orthod 2002; 72: 211-5.
  • 14. Polat Ö, Karaman Aİ. Ortodontik diş hareketleri ve biyokimyasal ajanlar. Türk Ortodonti Dergisi 2004; 17: 140-7.
  • 15. Haruyama N, Igarashi K, Saeki S, Otsuka-Isoya M, Shinoda H, Mitani H. Estrous-cycle-dependent variation in orthodontic tooth movement. J Dent Res 2002; 81: 406-10.
  • 16. Takano-Yamamoto T, Kawakami M, Yamashiro T. Effect of age on the rate of tooth movement in combination with local use of 1,25(OH)2D3 and mechanical force in the rat. J Dent Res 1992; 71: 1487-92.
  • 17. Kale S, Kocadereli İ. Farmakolojik ajanların ortodontik diş hareketi üzerine etkileri. Türk Ortodonti Dergisi 2003; 16: 142- 51.
  • 18. Kawakami M, Takamo-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movements in rats. J Bone Miner Metab 2004; 22: 541-6.
  • 19. Suda T, Ueno Y, Fujii K, Shinki T. Vitamin D and bone. J Cell Biochem 2003; 88: 259-66.
  • 20. Midgett RJ, Shaye R, Fruge JF Jr. The effect of altered bone metabolism on orthodontic tooth movement. Am J Orthod 1981; 80: 256-62.
  • 21. Goldie RS, King GJ. Root resorption and tooth movement in orthodontically treated, calcium-deficient, and lactating rats. Am J Orthod 1984; 85: 424-30.
  • 22. Sarı E. Nimesulid ve Asetilsalisilik Asidin Ortodontik Diş Hareketleri Üzerine Olan Etkilerinin Karşılaştırılması. Doktora Tezi. Genel Kurmay Başkanlığı Gülhane Askeri Tıp Akademisi Sağık Bilimleri Enstitüsü Diş Hekimliği Birliği Merkezi Ortodonti Ana Bilim Dalı Başkanlığı, Ankara, Türkiye, 1999.
  • 23. Mohammed AH, Tatakis DN, Dziak R. Leukotrienes in orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1989; 95: 231-7.
  • 24. Rifkin BR, Tai HH. Elevated thromboxane B2 levels in periodontal disease. J Periodontal Res 1981; 16: 194-8.
  • 25. Gurton AU, Akin E, Sagdic D, Olmez H. Effects of PGI2 and TxA2 analogs and inhibitors in orthodontic tooth movement. Angle Orthod 2004; 74: 526-32.
  • 26. Işımer Y, Işımer A, Uzel İ. Osteoklast aktivasyonuna prostasiklin’in etkileri. Türk Ortodonti Dergisi 1990; 3: 108-11.
  • 27. Mitchell JA, Larkin S, Williams TJ. Cyclooxygenase-2: regulation and relevance in inflammation. Biochem Pharmacol 1995; 50: 1535-42.
  • 28. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 1998; 38: 97-120.
  • 29. Krishnan V, Davidovitch Z. The effect of drugs on orthodontic tooth movement. Orthod Craniofac Res 2006; 9: 163-71.
  • 30. Sakuma Y, Li Z, Pilbeam CC, Alander CB, Chikazu D, Kawaguchi H, et al. Stimulation of cAMP production and cyclooxygenase-2 by prostaglandin E(2) and selective prostaglandin receptor agonists in murine osteoblastic cells. Bone 2004; 34: 827-34.
  • 31. Seifi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod 2003; 25: 199-204.
  • 32. Kale S, Kocadereli I, Atilla P, Aşan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2004; 125: 607-14.
  • 33. Arias OR, Marquez-Orozco MC. Aspirin, acetaminophen, and ibuprofen: their effects on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2006; 130: 364-70.
  • 34. Sari E, Olmez H, Gürton AU. Comparison of some effects of acetylsalicylicacid and rofecoxib during orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2004; 125: 310-5.
  • 35. Giunta D, Keller J, Nielsen FF, Melsen B. Influence of indomethacin on bone turnover related to orthodontic tooth movement in miniature pigs. Am J Orthod Dentofacial Orthop 1995; 108: 361-6.
  • 36. Zhou D, Hughes B, King GJ. Histomorphometric and biochemical study of osteoclasts at orthodontic compression sites in the rat during indomethacin inhibition. Arch Oral Biol 1997; 42: 717-26.
  • 37. Vayda P, Loveless J, Miller R, Theroux K. The effect of short term analgesic usage on the rate of orthodontic tooth movement. (abstract). J Dent Res 2000; 79: 614.
  • 38. Sandy JR, Harris M. Prostaglandins and tooth movement. Eur J Orthod 2003; 6: 175-82.
  • 39. de Carlos F, Cobo J, Díaz-Esnal B, Arguelles J, Vijande M, Costales M. Orthodontic tooth movement after inhibition of cyclooxygenase-2. Am J Orthod Dentofacial Orthop 2006; 129: 402-6.
  • 40. Polat Ö. Nonsteroidal Anti-inflamatuar İlaçların Sabit Ortodontik Apareylerden Kaynaklanan Ağrı Üzerine Etkisi. Doktora Tezi. Selçuk Üniversitesi Sağlık Bilimleri Enstitüsü, Konya, Türkiye, 2004.
  • 41. Arantes GM, Arantes VM, Ashmawi HA, Posso IP. Tenoxicam controls pain without altering orthodontic movement of maxillary canines. Orthod Craniofac Res 2009; 12: 14-9.
  • 42. Gameiro GH, Nouer DF, Pereira-Neto JS, Urtado MB, Novaes PD, de Castro M, et al. The effects of systemic stress on orthodontic tooth movement. Aust Orthod J 2008; 24: 121-8.
  • 43. Stabile AC, Stuani MB, Leite-Panissi CR, Rochaa MJ. Effects of short-term acetaminophen and celecoxib treatment on orthodontic tooth movement and neuronal activation in rat. Brain Res Bull 2009; 79: 396-401.
  • 44. Shetty N, Patil AK, Ganeshkar SV, Hegde S. Comparison of the effects on ibuprofen and acetaminophen on PGE2 levels in the GCF during orthodontic tooth movement: a human study. Prog Orthod 2013; 14: 6.
  • 45. Roche JJ, Cisneros GJ, Acs G. The effect of acetaminophen on tooth movement in rabbits. Angle Orthod 1997; 67: 231-6.
  • 46. Krasny M, Zadurska M, Cessak G, Fiedor P. Analysis of effect of non-steroidal anti-inflammatory drugs on teeth and oral tissues during orthodontic treatment. Acta Pol Pharm 2013; 70: 573-7.
  • 47. Kehoe MJ, Cohen SM, Zarrinnia K, Cowan A. The effect of acetaminophen, ibuprofen, and misoprostol on prostaglandin E2 synthesis and the degree and rate of orthodontic tooth movement. Angle Orthod 1996; 66: 339-49.
  • 48. Angeli A, Dovio A, Sartori ML, Masera RG, Ceoloni B, Prolo P, et al. Interactions between glucocorticoids and cytokines in the bone microenvironment. Ann N Y Acad Sci 2002; 966: 97-107.
  • 49. Ong CK, Walsh LJ, Harbrow D, Taverne AA, Symons AL. Orthodontic tooth movement in the prednisolone-treated rat. Angle Orthod 2000; 70: 118-25.
  • 50. Gürses N. Prednison ve isoflavon’un ortodontik diş hareketleri pekiştirme tedavisi üzerine etkilerinin histopatolojik olarak incelenmesi. Doktora Tezi. Atatürk Üniversitesi. Sağlık Bilimleri Enstitüsü, Erzurum, Türkiye, 2006.
  • 51. Ashcraft MB, Southard KA, Tolley EA. The effect of corticosteroidinduced osteoporosis on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1992; 102: 310-9.
  • 52. Kalia S, Melsen B, Verna C. Tissue reaction to orthodontic tooth movement in acute and chronic corticosteroid treatment. Orthod Craniofac Res 2004; 7: 26-34.
  • 53. Zahrowski JJ. Bisphosphonate treatment: an orthodontic concern calling for a proactive approach. Am J Orthod Dentofacial Orthop 2007; 131: 311-20.
  • 54. Krishnan V, Vijayaraghavan N, Manoharan M, Raj J, Davidovitch Z. The effects of drug intake by patients on orthodontic tooth movement. Semin Orthod 2012; 18: 278-85.
  • 55. Igarashi K, Mitani H, Adachi H, Shinoda H. Anchorage and retentive effects of a bisphosphonate (AHBuBP) on tooth movements in rats. Am J Orthod Dentofacial Orthop 1994; 106: 279-89.
  • 56. Adachi H, Igarashi K, Mitani H, Shinoda H. Effects of topical administration of a bisphosphonate (risedronate) on orthodontic tooth movements in rats. J Dent Res 1994; 73: 1478-86.
  • 57. Keles A, Grunes B, Difuria C, Gagari E, Srinivasan V, Darendeliler MA, et al. Inhibition of tooth movement by osteoprotegerin vs. pamidronate under conditions of constant orthodontic force. Eur J Oral Sci 2007; 115: 131-6.
  • 58. Kirschneck C, Wolf M, Reicheneder C, Wahlmann U, Proff P, Roemer P. Strontium ranelate improved tooth anchorage and reduced root resorption in orthodontic treatment of rats. Eur J Pharmacol 2014; 744: 67-75.
  • 59. Mundy GR. Statins and their potential for osteoporosis. Bone 2001; 29: 495-7.
  • 60. Maritz FJ, Conradie MM, Hulley PA, Gopal R, Hough S. Effect of statins on bone mineral density and bone histomorphometry in rodents. Arterioscler Thromb Vasc Biol 2001; 21: 1636-41.
  • 61. Ibrahim N, Mohamed N, Shuid. An update on statins: hope for osteoporotic fracture healing treatment. Curr Drug Targets 2013; 14: 1524-32.
  • 62. Han G, Chen Y, Hou J, Liu C, Chen C, Zhuang J, et al. Effects of simvastatin on relapse and remodeling of periodontal tissues after tooth movement in rats. Am J Orthod Dentofacial Orthop 2010; 138: 550.
  • 63. Pedrera JD, Canal ML, Carvajal J, Postigo S, Villa LF, Hernandez ER, et al. Influence of vitamin D administration on bone ultrasound measurements in patients on anticonvulsant therapy. Eur J Clin Invest 2000; 30: 895-9.
  • 64. Feldkamp J, Becker A, Witte OW, Scharff D, Scherbaum WA. Longterm anti convulsant therapy leads to low bone mineral densityevidence for direct drug effects of phenytoin and carbamazepine on human osteoblast-like cells. Exp Clin Endocrinol Diabetes 2000; 108: 37-43.
  • 65. Herter LD, Accetta SG. Contraception and pregnancy in adolescence. J Pediatr 2001; 77: 170-8.
  • 66. Olyaee P, Mirzakouchaki B, Ghajar K, Seyyedi SA, Shalchi M, Garjani A, et al. The effect of oral contraceptives on orthodontic tooth movement in rat. Med Oral Patol Oral Cir Bucal 2013; 18: 146-50.
  • 67. Chakkalakal DA. Alcohol-induced bone loss and deficient bone repair. Alcohol Clin Exp Res 2005; 29: 2077-90.
  • 68. Ronis MJ, Mercer K, Chen JR. Effects of nutrition and alcohol consumption on bone loss. Curr Osteoporos Rep 2011; 9: 53-9.
  • 69. Sodagar A, Donyavi Z, Arab S, Kharrazifard MJ. Effect of nicotine on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 2011; 139: 261-5.
  • 70. Ford H, Suri S, Nilforoushan D, Manolson M, Gong SG. Nitric oxide in human gingival crevicular fluid after orthodontic force application. Arch Oral Biol 2014; 59: 1211-6.
  • 71. Hayashi K, Igarashi K, Miyoshi K, Shinoda H, Mitani H. Involment of nitric oxide in orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 2002; 122: 306-9.
  • 72. Hellsing E, Hammarström L. The effects of pregnancy and fluoride on orthodontic tooth movements in rats. Eur J Orthod 1991; 13: 223-30.
There are 72 citations in total.

Details

Other ID JA66AV84EG
Journal Section Collection
Authors

Mine Geçgelen Cesur This is me

Gözde Beygirci This is me

Publication Date August 1, 2016
Published in Issue Year 2016 Volume: 17 Issue: 2

Cite

EndNote Cesur MG, Beygirci G (August 1, 2016) Endogenous and Exogenous Substances Influencing the Orthodontic Tooth Movement. Meandros Medical And Dental Journal 17 2 46–53.