Giriş: Hücre dışı DNAlar (cf-DNA'lar), hücre apoptozu, nekroz veya yaşayan hücrelerden aktif salgılama gibi mekanizmalarla kan dolaşımına girebilir ve kanser hücrelerinin plazma ve seruma saldığı DNA'lar da bunların kaynağı olabilir. Çeşitli çalışmalar, cf-DNA'ların kanser gelişimi ve metastazdaki önemli rolünü vurgulamıştır. Bu cf-DNA'lar, hücre hasarı, apoptoz veya aktif salgılama nedeniyle kan dolaşımına girebildiği gibi, kanser hücreleri tarafından da salınabilir. Bilim insanları arasında cf-DNA'ların kanserin ilerlemesi ve metastaz üzerindeki etkileri konusunda süregelen bir tartışma vardır. Bu çalışma, yumurtalık kanseri hücrelerinin tümörojenik olmayan meme hücrelerinin çoğalma ve yaşama yeteneklerini nasıl etkilediğini araştırmayı ve ilk gözlemleri sunmayı amaçlamaktadır.
Yöntem ve Gereçler: İnsan yumurtalık kanseri hücreleri ve normal insan meme hücreleri, laboratuvarımızda uygun ortamlarda %5 CO2 içeren 37°C'de kültüre edilmiştir. Ortak kültür deneyleri için hücreler, DNase I içeren veya içermeyen ortamlarda 72 saat boyunca plakalar ve insertlerde ayrı ayrı inkübe edilmiştir. Hücre canlılığı, tripan mavisi dışlama testi ile değerlendirilirken, çoğalma ve yapışma XTT test kiti ile analiz edilmiştir.
Sonuçlar: Bu çalışma, OVCAR-3 hücreleri ile birlikte kültüre edilen MCF-10A hücrelerinin canlılık ve çoğalma oranlarının arttığını gözlemlemiştir. Ortak kültürdeki çoğalma, tekil kültürlerle kıyaslandığında daha yüksekti. DNase I uygulaması, OVCAR-3 hücrelerinin çoğalma (p<0.01) ve canlılığını önemli ölçüde azaltmış, ancak MCF-10A hücrelerinin çoğalma ve canlılığı üzerinde anlamlı bir etki göstermemiştir. DNase I varlığında veya yokluğunda OVCAR-3 hücrelerine özgü p53 ekzon 7 mutasyonları veya hiper-metilasyon tespit edilmemiştir.
1. Weinberg RA, Weinberg RA. The Biology of Cancer: W.W. Norton; 2013.
2. Garcia-Olmo D, Garcia-Olmo D, Ontanon J, Martinez E, Vallejo M. Tumor DNA circulating in the plasma might play a role in metastasis. The hypothesis of the genometastasis. Histology and histopathology. 1999;14(4):1159-64.
3. Garcıa-Olmo D, Ontanon J, Garcı́a-Olmo D, Atienzar M, Vallejo M. Detection of genomically-tagged cancer cells in different tissues at different stages of tumor development: lack of correlation with the formation of metastasis. Cancer letters. 1999;140(1-2):11-20.
4. Garcı́a-Olmo Dn, Garcı́a-Olmo DC, Ontañón Js, Martinez E. Horizontal transfer of DNA and the “genometastasis hypothesis”. Blood, The Journal of the American Society of Hematology. 2000;95(2):724-5.
5. Chen Z, Fadiel A, Naftolin F, Eichenbaum K, Xia Y. Circulation DNA: biological implications for cancer metastasis and immunology. Medical hypotheses. 2005;65(5):956-61.
6. Silva JM, Dominguez G, Garcia JM, Gonzalez R, Villanueva MJ, Navarro F, et al. Presence of tumor DNA in plasma of breast cancer patients: clinicopathological correlations. Cancer research. 1999;59(13):3251-6.
7. Silva JM, Silva J, Sanchez A, Garcia JM, Dominguez G, Provencio M, et al. Tumor DNA in plasma at diagnosis of breast cancer patients is a valuable predictor of disease-free survival. Clinical Cancer Research. 2002;8(12):3761-6.
8. Garcia JM, Garcia V, Silva J, Pena C, Dominguez G, Sanchez A, et al. Extracellular tumor DNA in plasma and overall survival in breast cancer patients. Genes, Chromosomes and Cancer. 2006;45(7):692-701.
9. Lujambio A, Esteller M. How epigenetics can explain human metastasis: a new role for microRNAs. Cell cycle. 2009;8(3):377-82.
10. Krypuy M, Ahmed AA, Etemadmoghadam D, Hyland SJ, org AOCSGntp, deFazio A, et al. High resolution melting for mutation scanning of TP53 exons 5–8. BMC cancer. 2007;7:1
11. Gasco M, Shami S, Crook T. The p53 pathway in breast cancer. Breast cancer research. 2002;4:1-7.
12. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Human mutation. 2007;28(6):622-9.
13. Esteller M. Epigenetics in cancer. New England Journal of Medicine. 2008;358(11):1148-59.
14. Rishi V, Bhattacharya P, Chatterjee R, Rozenberg J, Zhao J, Glass K, et al. CpG methylation of half-CRE sequences creates C/EBPα binding sites that activate some tissue-specific genes. Proceedings of the National Academy of Sciences. 2010;107(47):20311-6.
15. Rozenberg JM, Shlyakhtenko A, Glass K, Rishi V, Myakishev MV, FitzGerald PC, Vinson C. All and only CpG containing sequences are enriched in promoters abundantly bound by RNA polymerase II in multiple tissues. BMC genomics. 2008;9:1-13.
16. Zhu J, Yao X. Use of DNA methylation for cancer detection and molecular classification. BMB Reports. 2007;40(2):135-41.
17. Shen C, Sheng Q, Zhang X, Fu Y, Zhu K. Hypermethylated APC in serous carcinoma based on a meta-analysis of ovarian cancer. Journal of Ovarian Research. 2016;9:1-8.
18. Lewis CM, Cler LR, Bu D-W, Zöchbauer-Müller S, Milchgrub S, Naftalis EZ, et al. Promoter hypermethylation in benign breast epithelium in relation to predicted breast cancer risk. Clinical Cancer Research. 2005;11(1):166-72.
19. Powell E, Piwnica-Worms D, Piwnica-Worms H. Contribution of p53 to metastasis. Cancer discovery. 2014;4(4):405-14.
20. Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nature Reviews Cancer. 2017;17(4):223-38.
21. Diaz Jr LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. Journal of clinical oncology. 2014;32(6):579-86.
22. Thierry AR, El Messaoudi S, Gahan P, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer and metastasis reviews. 2016;35:347-76.
23. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch R-D, Knippers R. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer research. 2001;61(4):1659-65.
24. Alekseeva L, Mironova N. Role of cell-free DNA and deoxyribonucleases in tumor progression. International Journal of Molecular Sciences. 2021;22(22):12246.
25. Trejo-Becerril C, Pérez-Cardenas E, Gutiérrez-Díaz B, De La Cruz-Sigüenza D, Taja-Chayeb L, González-Ballesteros M, et al. Antitumor effects of systemic DNAse I and proteases in an in vivo model. Integrative cancer therapies. 2016;15(4):NP35-NP43.
26. Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harbor perspectives in biology. 2016;8(9):a019505.
27. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nature reviews genetics. 2007;8(4):286-98.
28. Dal A, Coşan DT. The effect of DNase I on free DNAs and its relationship with metastasis: A preliminary results. Biological Diversity and Conservation. 2020;13(2):153-9.
DNASE I IMPACT ON BREAST CELLS CO-CULTURED WITH OVARIAN CANCER CELLS: A STUDY OF CELLULAR INTERACTIONS AND VIABILITY
Year 2024,
Volume: 25 Issue: 4, 351 - 364, 22.12.2024
Introduction: Cell-free DNAs (cf-DNAs) are released into the bloodstream through cell apoptosis, necrosis, or active secretion, often originating from cancer cells. These cf-DNAs have been associated with cancer development and metastasis, although their precise role remains under debate. DNase I, an enzyme that degrades extracellular DNA, has shown potential to impact cf-DNAs and influence cancer progression. This study investigates the effects of ovarian cancer cells on the proliferation and viability of non-tumorigenic breast cells, with a focus on DNase I’s role.
Materials and Methods: Human ovarian cancer cells (OVCAR-3) and normal human breast cells (MCF-10A) were cultured under standard conditions (37°C, 5% CO₂). Co-culture experiments were conducted by incubating cells separately in plates and inserts, with or without DNase I, for 72 hours. Cell viability was assessed using the trypan blue exclusion test, while proliferation and adhesion were measured with an XTT assay.
Results: DNase I significantly reduced OVCAR-3 proliferation (p<0.001) and adhesion (p<0.01) without affecting MCF-10A cells. DNase I also decreased OVCAR-3 cell viability but did not significantly impact MCF-10A viability. Genetic analysis identified p53 exon 7 mutations and methylation of APC1A, APC1B, and RASSF1A genes in OVCAR-3 cells, which were unaffected by DNase I. No mutations or methylation were detected in MCF-10A cells.
Conclusion: The results suggest that the impact of DNase I on the proliferation and viability of cancer cells is significant and warrants further investigation. The potential effects of prolonged exposure between different cell types could yield even more compelling findings.
Çalışma ticari olarak satın alınan hücre kültürleri üzerinde yapıldığından etik kurul onay belgesine gerek yoktur.
Supporting Institution
This study was supported by a Grant from the Research Foundation of Eskisehir Osmangazi University, Türkiye (Project no: 201811066).
Project Number
201811066
References
1. Weinberg RA, Weinberg RA. The Biology of Cancer: W.W. Norton; 2013.
2. Garcia-Olmo D, Garcia-Olmo D, Ontanon J, Martinez E, Vallejo M. Tumor DNA circulating in the plasma might play a role in metastasis. The hypothesis of the genometastasis. Histology and histopathology. 1999;14(4):1159-64.
3. Garcıa-Olmo D, Ontanon J, Garcı́a-Olmo D, Atienzar M, Vallejo M. Detection of genomically-tagged cancer cells in different tissues at different stages of tumor development: lack of correlation with the formation of metastasis. Cancer letters. 1999;140(1-2):11-20.
4. Garcı́a-Olmo Dn, Garcı́a-Olmo DC, Ontañón Js, Martinez E. Horizontal transfer of DNA and the “genometastasis hypothesis”. Blood, The Journal of the American Society of Hematology. 2000;95(2):724-5.
5. Chen Z, Fadiel A, Naftolin F, Eichenbaum K, Xia Y. Circulation DNA: biological implications for cancer metastasis and immunology. Medical hypotheses. 2005;65(5):956-61.
6. Silva JM, Dominguez G, Garcia JM, Gonzalez R, Villanueva MJ, Navarro F, et al. Presence of tumor DNA in plasma of breast cancer patients: clinicopathological correlations. Cancer research. 1999;59(13):3251-6.
7. Silva JM, Silva J, Sanchez A, Garcia JM, Dominguez G, Provencio M, et al. Tumor DNA in plasma at diagnosis of breast cancer patients is a valuable predictor of disease-free survival. Clinical Cancer Research. 2002;8(12):3761-6.
8. Garcia JM, Garcia V, Silva J, Pena C, Dominguez G, Sanchez A, et al. Extracellular tumor DNA in plasma and overall survival in breast cancer patients. Genes, Chromosomes and Cancer. 2006;45(7):692-701.
9. Lujambio A, Esteller M. How epigenetics can explain human metastasis: a new role for microRNAs. Cell cycle. 2009;8(3):377-82.
10. Krypuy M, Ahmed AA, Etemadmoghadam D, Hyland SJ, org AOCSGntp, deFazio A, et al. High resolution melting for mutation scanning of TP53 exons 5–8. BMC cancer. 2007;7:1
11. Gasco M, Shami S, Crook T. The p53 pathway in breast cancer. Breast cancer research. 2002;4:1-7.
12. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Human mutation. 2007;28(6):622-9.
13. Esteller M. Epigenetics in cancer. New England Journal of Medicine. 2008;358(11):1148-59.
14. Rishi V, Bhattacharya P, Chatterjee R, Rozenberg J, Zhao J, Glass K, et al. CpG methylation of half-CRE sequences creates C/EBPα binding sites that activate some tissue-specific genes. Proceedings of the National Academy of Sciences. 2010;107(47):20311-6.
15. Rozenberg JM, Shlyakhtenko A, Glass K, Rishi V, Myakishev MV, FitzGerald PC, Vinson C. All and only CpG containing sequences are enriched in promoters abundantly bound by RNA polymerase II in multiple tissues. BMC genomics. 2008;9:1-13.
16. Zhu J, Yao X. Use of DNA methylation for cancer detection and molecular classification. BMB Reports. 2007;40(2):135-41.
17. Shen C, Sheng Q, Zhang X, Fu Y, Zhu K. Hypermethylated APC in serous carcinoma based on a meta-analysis of ovarian cancer. Journal of Ovarian Research. 2016;9:1-8.
18. Lewis CM, Cler LR, Bu D-W, Zöchbauer-Müller S, Milchgrub S, Naftalis EZ, et al. Promoter hypermethylation in benign breast epithelium in relation to predicted breast cancer risk. Clinical Cancer Research. 2005;11(1):166-72.
19. Powell E, Piwnica-Worms D, Piwnica-Worms H. Contribution of p53 to metastasis. Cancer discovery. 2014;4(4):405-14.
20. Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nature Reviews Cancer. 2017;17(4):223-38.
21. Diaz Jr LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. Journal of clinical oncology. 2014;32(6):579-86.
22. Thierry AR, El Messaoudi S, Gahan P, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer and metastasis reviews. 2016;35:347-76.
23. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch R-D, Knippers R. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer research. 2001;61(4):1659-65.
24. Alekseeva L, Mironova N. Role of cell-free DNA and deoxyribonucleases in tumor progression. International Journal of Molecular Sciences. 2021;22(22):12246.
25. Trejo-Becerril C, Pérez-Cardenas E, Gutiérrez-Díaz B, De La Cruz-Sigüenza D, Taja-Chayeb L, González-Ballesteros M, et al. Antitumor effects of systemic DNAse I and proteases in an in vivo model. Integrative cancer therapies. 2016;15(4):NP35-NP43.
26. Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harbor perspectives in biology. 2016;8(9):a019505.
27. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nature reviews genetics. 2007;8(4):286-98.
28. Dal A, Coşan DT. The effect of DNase I on free DNAs and its relationship with metastasis: A preliminary results. Biological Diversity and Conservation. 2020;13(2):153-9.
Turgut Coşan D, Çalış İU (December 1, 2024) DNASE I IMPACT ON BREAST CELLS CO-CULTURED WITH OVARIAN CANCER CELLS: A STUDY OF CELLULAR INTERACTIONS AND VIABILITY. Meandros Medical And Dental Journal 25 4 351–364.